dc.contributorMaldonado Villamil, Mauricio
dc.contributorAplicaciones Analíticas de Compuestos Orgánicos (Aaco)
dc.creatorRamírez Perdomo, Gabriel Andrés
dc.date.accessioned2023-01-12T16:16:04Z
dc.date.available2023-01-12T16:16:04Z
dc.date.created2023-01-12T16:16:04Z
dc.date.issued2022
dc.identifierhttps://repositorio.unal.edu.co/handle/unal/82893
dc.identifierUniversidad Nacional de Colombia
dc.identifierRepositorio Institucional Universidad Nacional de Colombia
dc.identifierhttps://repositorio.unal.edu.co/
dc.description.abstractEste trabajo de investigación tiene como objetivo la síntesis y caracterización de resorcinarenos tipo corona para modificar una superficie polimérica con base en metacrilatos y evaluar la interacción molecular y su capacidad de preconcentración con L-carnitina. La investigación se realizó en cinco etapas: En la primera etapa se desarrolló la síntesis de los resorcinarenos de partida entre el resorcinol y propanal y/o heptanal obteniendo como resultado los productos C-tetra(etil)calix[4]resorcinareno (1A) y C-tetra(hexil)calix[4]resorcinareno (1B), los cuales fueron caracterizados por diferentes técnicas instrumentales tales como IR-ATR, RMN-1H, RMN-13C y espectrometría de masas obteniendo como un único confórmero el tipo corona de gran utilidad por su facilidad de formar sistemas tipo host-guest. En la segunda etapa se evaluó la interacción host-guest (huésped-hospedero) en solución entre los resorcinarenos C-tetra(etil)calix[4]resorcinareno (1A) y C-tetra(hexil) calix[4]resorcinareno (1B) con L-carnitina (1C),este se realizó en disolucion acuosa donde se evaluó mediante RMN-1H y espectrometría de masas evidenciando una interacción entre ellos debido a la cavidad existente entre los resorcinarenos gracias a sus interacciones tipo π. La tercera etapa consistió en la copolimerización entre el butilmetacrilato (BMA) y etilendimetacrilato (EDMA) y su modificación física con los resorcinarenos (1A y 1B) el material polímero se caracterizó a través de IR y SEM – MEB En la cuarta etapa se evalúan las variables de tiempo, solvente, volumen de carga, concentración y pH. Elegidas las mejores condiciones estas se aplican en la última etapa para la cuantificación de la L-carnitina (1C) partiendo del material polímero modificado con resorcinarenos (1A y 1B) mediante cromatografía líquida acoplada a masas.
dc.description.abstractThis research work aims to synthesize and characterize corona-type resorcinarenes to modify a methacrylate-based polymeric surface and to evaluate the molecular interaction and their preconcentration ability with L-carnitine. The research was carried out in five stages: In the first stage, the synthesis of the starting resorcinarenes between resorcinol and propanal and/or heptanal was developed obtaining as a result the products C-tetra(ethyl)calix[4]resorcinarene (1A) and C-tetra(hexyl)calix[4]resorcinarene (1B), which were characterized by different instrumental techniques such as IR-ATR, 1H-NMR, 13C-NMR and mass spectrometry obtaining as a single conformer the crown type of great utility for its ease of forming host-guest systems. In the second stage, the host-guest interaction in solution between the resorcinarenes C-tetra(ethyl)calix[4]resorcinarene (1A) and C-tetra(hexyl)calix[4]resorcinarene (1B) with L-carnitine (1C) was evaluated, This was performed in aqueous solution where it was evaluated by 1H-NMR and mass spectrometry evidencing an interaction between them due to the existing cavity between the resorcinarenes thanks to their π-type interactions. The third stage consisted of the copolymerization between butylmethacrylate (BMA) and ethylenedimethacrylate (EDMA) and its physical modification with resorcinarenes (1A and 1B) the polymer material was characterized by IR and SEM-MEB. In the fourth stage, the variables of time, solvent, loading volume, concentration and pH are evaluated. Once the best conditions are chosen, these are applied in the last stage for the quantification of L-carnitine (1C) from the polymer material modified with resorcinarenes (1A and 1B) by mass-coupled liquid chromatography.
dc.languagespa
dc.publisherUniversidad Nacional de Colombia
dc.publisherBogotá - Ciencias - Maestría en Ciencias - Química
dc.publisherFacultad de Ciencias
dc.publisherBogotá, Colombia
dc.publisherUniversidad Nacional de Colombia - Sede Bogotá
dc.relationPitt, M. A. & Johnson, D. W. Main group supramolecular chemistry. Chem. Soc. Rev. 36, 1441–1453 (2007).
dc.relationIzatt, R. M. Charles J. Pedersen’s legacy to chemistry. Chem. Soc. Rev. 46, 2380– 2384 (2017).
dc.relationAgrawal, Y. K. & Patadia, R. N. Studies on resorcinarenes and their analytical applications. Rev. Anal. Chem. 25, 155–239 (2006).
dc.relationMorand, R., Donzelli, M., Haschke, M. & Krähenbühl, S. Quantification of plasma carnitine and acylcarnitines by high-performance liquid chromatography-tandem mass spectrometry using online solid-phase extraction. Anal. Bioanal. Chem. 405, 8829–8836 (2013).
dc.relationJohnson, D. W. An acid hydrolysis method for quantification of plasma free and total carnitine by flow injection tandem mass spectrometry. Clin. Biochem. 43, 1362–1367 (2010).
dc.relationZhang, Z. et al. Electrochemical enzyme biosensor for carnitine detection based on cathodic stripping voltammetry. Sensors Actuators, B Chem. 321, 128473 (2020).
dc.relationWang, M. et al. A simple and precise method for measurement of serum free carnitine and acylcarnitines by isotope dilution HILIC-ESI-MS/MS. Int. J. Mass Spectrom. 446, 116208 (2019).
dc.relationSeline, K. G. & Johein, H. The determination of l-carnitine in several food samples. Food Chem. 105, 793–804 (2007).
dc.relationLu, W. H. et al. Using matrix-induced ion suppression combined with LC-MS/MS for quantification of trimethylamine-N-oxide, choline, carnitine and acetylcarnitine in dried blood spot samples. Anal. Chim. Acta 1149, 338214 (2021).
dc.relationRudolph, W., Remane, D., Wissenbach, D. K. & Peters, F. T. Liquid chromatography-mass spectrometry-based determination of ergocristine, ergocryptine, ergotamine, ergovaline, hypoglycin A, lolitrem B, methylene cyclopropyl acetic acid carnitine, N-acetylloline, N-formylloline, paxilline, and peramine in equine hai. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 1117, 127–135 (2019).
dc.relationMinkler, P. E., Stoll, M. S. K., Ingalls, S. T., Kerner, J. & Hoppel, C. L. Validated Method for the Quantification of Free and Total Carnitine, Butyrobetaine, and Acylcarnitines in Biological Samples. Anal. Chem. 87, 8994–9001 (2015).
dc.relationAhn, J. H., Kwak, B. M., Park, J. M., Kim, N. K. & Kim, J. M. Rapid determination of L-carnitine in infant and toddler formulas by liquid chromatography tandem mass spectrometry. Korean J. Food Sci. Anim. Resour. 34, 749–756 (2014).
dc.relationProkorátová, V., Kvasnička, F., Ševčík, R. & Voldřich, M. Capillary electrophoresis determination of carnitine in food supplements. J. Chromatogr. A 1081, 60–64 (2005).
dc.relationTan, X. et al. Novel competitive fluorescence sensing platform for l-carnitine based on cationic pillar[5]arene modified gold nanoparticles. Sensors (Switzerland) 18, (2018).
dc.relationChen, Y. C., Tsai, C. J. & Feng, C. H. Fluorescent derivatization combined with aqueous solvent-based dispersive liquid-liquid microextraction for determination of butyrobetaine, L-carnitine and acetyl-L-carnitine in human plasma. J. Chromatogr. A 1464, 32–41 (2016)
dc.relationManjón, A., Obón, J. M. & Iborra, J. L. Determination of L-carnitine by flow injection analysis with NADH fluorescence detection. Anal. Biochem. 281, 176–181 (2000).
dc.relationHe, Q., Vargas-Zúñiga, G. I., Kim, S. H., Kim, S. K. & Sessler, J. L. Macrocycles as Ion Pair Receptors. Chem. Rev. 119, 9753–9835 (2019).
dc.relationRuiz-Botella, S., Vidossich, P., Ujaque, G., Vicent, C. & Peris, E. A Tetraferrocenyl Resorcinarene Cavitand as a Redox-Switchable Host of Ammonium Salts. Chem. - A Eur. J. 21, 10558–10565 (2015).
dc.relationTaylor, P. J. Matrix effects: The Achilles heel of quantitative high-performance liquid chromatography-electrospray-tandem mass spectrometry. Clin. Biochem. 38, 328–334 (2005).
dc.relationHuang, Z. et al. Determination of inorganic pharmaceutical counterions using hydrophilic interaction chromatography coupled with a Corona® CAD detector. J. Pharm. Biomed. Anal. 50, 809–814 (2009).
dc.relationJohnson, W. M., Kido Soule, M. C. & Kujawinski, E. B. Extraction efficiency and quantification of dissolved metabolites in targeted marine metabolomics. Limnol. Oceanogr. Methods 15, 417–428 (2017).
dc.relationLee, M. et al. Selective solid-phase extraction of catecholamines by the chemically modified polymeric adsorbents with crown ether. J. Chromatogr. A 1160, 340–344 (2007).
dc.relationChen, L. Q. et al. High-throughput and selective solid-phase extraction of urinary catecholamines by crown ether-modified resin composite fiber. J. Chromatogr. A 1561, 48–55 (2018).
dc.relationCastillo-Aguirre, A. & Maldonado, M. Preparation of methacrylate-based polymers modified with chiral resorcinarenes and their evaluation as sorbents in norepinephrine microextraction. Polymers (Basel). 11, 1–21 (2019).
dc.relationVelásquez-Silva, B. A., Castillo-Aguirre, A., Rivera-Monroy, Z. J. & Maldonado, M. Aminomethylated calix[4]resorcinarenes as modifying agents for glycidyl methacrylate (GMA) rigid copolymers surface. Polymers (Basel). 11, (2019).
dc.relationBaeyer, A. Ueber die Verbindungen der Aldehyde mit den Phenolen und aromatischen Kohlenwasserstoffen. Berichte der Dtsch. Chem. Gesellschaft 5, 1094–1100 (1872).
dc.relationNiederl, J. & Vogel, H. Aldeyde-Resorcinol Condensations. J. Am. Chem. Soc. 62, 2512 (1940).
dc.relationHolger Erdtman and Sverker Hogberg. Tetrahedron Lett. 1679–1682 (1968).
dc.relationJain, V. K. & Kanaiya, P. H. Chemistry of calix[4]resorcinarenes. Russ. Chem. Rev. 80, 75–102 (2011).
dc.relationIn, R., Recognition, M. & Devices, S. and Supramolecular Devices. 67–94 (1999).
dc.relationCalixarenes: a versa tile class of macrocyclic compounds.
dc.relationVerboom, W., Durie, A., Egberink, R. J. M., Asfari, Z. & Reinhoudt, D. N. Ipso Nitration of p-tert-Butylcalix[4]arenes. J. Org. Chem. 57, 1313–1316 (1992).
dc.relationCram, D. J. The Design of Molecular Hosts, Guests, and Their Complexes (Nobel Lecture). Angew. Chemie Int. Ed. English 27, 1009–1020 (1988).
dc.relationSchneider, U. & Schneider, H. ‐J. Synthese und Eigenschaften von Makrocyclen aus Resorcinen sowie von entsprechenden Derivaten und Wirt‐Gast‐Komplexen. Chem. Ber. 127, 2455–2469 (1994).
dc.relationPfeiffer, C. R., Feaster, K. A., Dalgarno, S. J. & Atwood, J. L. Syntheses and characterization of aryl-substituted pyrogallol[4]arenes and resorcin[4]arenes. CrystEngComm 18, 222–229 (2015).
dc.relationde Namor, A. F. D. et al. Thermodynamic and electrochemical aspects of the interactions of functionalised calix(4)arenes and metal cations in ‘allosteric media’’’. Pure Appl. Chem. 66, 435–440 (1994).
dc.relationIwanek, W. The synthesis of octamethoxyresorc[4]arenes catalysed by Lewis acids. Tetrahedron 54, 14089–14094 (1998).
dc.relationMcIldowie, M. J., Mocerino, M., Skelton, B. W. & White, A. H. Facile Lewis Acid Catalyzed Synthesis of C4 Symmetric Resorcinarenes. Org. Lett. 2, 3869–3871 (2000).
dc.relationYamakawa, Y., Ueda, M., Nagahata, R., Takeuchi, K. & Asai, M. Rapid synthesis of dendrimers based on calix[4]resorcinarenes. J. Chem. Soc. - Perkin Trans. 1 4135–4139 (1998). doi:10.1039/a806475j
dc.relationKijima, T.; Kato, Y.; Ohe, K.; et al. Bull. Chem. Soc. Jpn. 1994.pdf.
dc.relationLewis, P. T. et al. Tetraarylboronic Acid Resorcinarene Stereoisomers. Versatile New Substrates for Divergent Polyfunctionalization and Molecular Recognition. J. Org. Chem. 62, 6110–6111 (1997).
dc.relationBeer, P. D. Meldola Medal Lecture. Redox responsive macrocyclic receptor molecules containing transition metal redox centres. Chem. Soc. Rev. 18, 409–450 (1989).
dc.relationCurtis, A. D. M. Novel Calix[4]resorcinarene glycosides. Tetrahedron Lett. 38, 4295–4296 (1997).
dc.relationAoyama, Y., Tanaka, Y. & Sugahara, S. Molecular Recognition. 5. Molecular Recognition. 68, 5397–5404 (1989)
dc.relationGibb, B. C., Chapman, R. G., Sherman, J. C. & Soc, D. J. J. A. C. Synthesis of Hydroxyl-Footed Cavitands their rigidity , enforced cavities , and synthetic viability . Thus , the incorporation of new functionalities into the pendant groups of these compounds would expand their versatility toward future applications . Fo. Reactions 1505–1509 (1996).
dc.relationKobayashi, K., Asakawa, Y., Kato, Y. & Aoyama, Y. Complexation of Hydrophobic Sugars and Nucleosides in Water with Tetrasulfonate Derivatives of Resorcinol Cyclic Tetramer Having a Polyhydroxy Aromatic Cavity: Importance of Guest–Host CH–π Interaction. J. Am. Chem. Soc. 114, 10307–10313 (1992).
dc.relationScott, M. P. & Sherburn, M. S. Resorcinarenes and Pyrogallolarenes. Comprehensive Supramolecular Chemistry II 1, (Elsevier, 2017).
dc.relationTunstad, L. M. et al. Host-Guest Complexation. 48. Octol Building Blocks for Cavitands and Carcerands. J. Org. Chem. 54, 1305–1312 (1989).
dc.relationMorikawa, O., Ueno, R., Nakajima, K., Kobayashi, K. & Konishi, H. Trifluoromethanesulfonic acid-catalyzed synthesis of resorcinarenes: Cyclocondensation of 2-bromoresorcinol with aldehydes. Synthesis (Stuttg). 761– 765 (2002). doi:10.1055/s-2002-25765
dc.relationBeyeh, N. K. & Rissanen, K. Tetranitroresorcin[4]arene: synthesis and structure of a new stereoisomer. Tetrahedron Lett. 50, 7369–7373 (2009).
dc.relationBourgeois, J. M. & Stoeckli-Evans, H. Synthesis of new resorcinarenes under alkaline conditions. Helv. Chim. Acta 88, 2722–2730 (2005).
dc.relationVicens, J. & Vicens, Q. Origins and emergences of supramolecular chemistry. J. Incl. Phenom. Macrocycl. Chem. 65, 221–235 (2009).
dc.relationWeinelt, F. & Schneider, H. J. Mechanisms of Macrocycle Genesis. The Condensation of Resorcinol with Aldehydes. J. Org. Chem. 56, 5527–5535 (1991).
dc.relationSverker Hógberg, A. G. Stereoselective Synthesis and DNMR Study of Two 1,8,15,22-T etraphenyl [I4]metacyclophan-3,5,10,12,17,19,24,26-octolss. J. Am. Chem. Soc. 102, 6046–6050 (1980).
dc.relationMa, B. Q. & Coppens, P. A novel scoop-shaped conformation of C methylcalix[4]resorcinarene in a bilayer structure. Chem. Commun. 2, 424–425 (2002).
dc.relationAbis, L., Dalcanale, E., Du vosel, A. & Sperala, S. Structurally New Macrocycles from the Resorcinol-Aldehyde Condensation. Configurational and Conformational Analyses by Means of Dynamic NMR, NOE, and T1 Experiments. J. Org. Chem. 53, 5475–5479 (1988).
dc.relationTimmerman W.; Reinhoudt, D. N. P. . V., Timmerman W.; Reinhoudt, D. N. P. . V. & Timmerman W.; Reinhoudt, D. N. P. . V. Resorcinarenes. Tetrahedron 52, 2663–2704 (1996).
dc.relationSanabria, E., Esteso, M. A., Pérez-Redondo, A., Vargas, E. & Maldonado, M. Synthesis and characterization of two sulfonated resorcinarenes: A new example of a linear array of sodium centers and macrocycles. Molecules 20, 9915–9928 (2015).
dc.relationVelásquez-Silva, A., Cortés, B., Rivera-Monroy, Z. J., Pérez-Redondo, A. & Maldonado, M. Crystal structure and dynamic NMR studies of octaacetyl tetra(propyl)calix[4]resorcinarene. J. Mol. Struct. 1137, 380–386 (2017).
dc.relationCastillo-Aguirre, A., Esteso, M. A. & Maldonado, M. Resorcin[4]arenes: Generalities and Their Role in the Modification and Detection of Amino Acids. Curr. Org. Chem. 24, 2412–2425 (2020).
dc.relationFabbri, P. & Messori, M. Surface Modification of Polymers: Chemical, Physical, and Biological Routes. Modification of Polymer Properties (Elsevier Inc., 2017). doi:10.1016/B978-0-323-44353-1.00005-1
dc.relationFader, R. et al. Novel organic polymer for UV-enhanced substrate conformal imprint lithography. Microelectron. Eng. 98, 238–241 (2012).
dc.relationMaldonado, M., Sanabria, E., Batanero, B. & Esteso, M. Á. Apparent molal volume and viscosity values for a new synthesized diazoted resorcin[4]arene in DMSO at several temperatures. J. Mol. Liq. 231, 142–148 (2017).
dc.relationSokoließ, T., Menyes, U., Roth, U. & Jira, T. Separation of cis- and trans-isomers of thioxanthene and dibenz[b,e]oxepin derivatives on calixarene- and resorcinarene bonded high-performance liquid chromatography stationary phases. J. Chromatogr. A 948, 309–319 (2002).
dc.relationRuderisch, A. et al. Synthesis and characterization of a novel resorcinarene-based stationary phase bearing polar headgroups for use in reversed-phase high performance liquid chromatography. J. Chromatogr. A 1095, 40–49 (2005).
dc.relationAghazadeh-Habashi, A., Asghar, W. & Jamali, F. Simultaneous determination of selected eicosanoids by reversed-phase HPLC method using fluorescence detection and application to rat and human plasma, and rat heart and kidney samples. J. Pharm. Biomed. Anal. 110, 12–19 (2015).
dc.relationSynthesis, A. 3 , 3 0 -Diaryl-BINOL Phosphoric Acids as Enantioselective Extractants of Benzylic Primary Amines. 43, 34–43 (2011).
dc.relationLipkowski, J. et al. Host-guest interactions of calix[4]resorcinarenes with benzene derivatives in conditions of reversed-phase high-performance liquid chromatography. Determination of stability constants. J. Phys. Org. Chem. 11, 426–437 (1998).
dc.relationZhang, H. et al. Resorcarene derivative used as a new stationary phase for capillary gas chromatography. J. Chromatogr. A 787, 161–169 (1997).
dc.relationBachmann, K. et al. Resorcarenes as Pseudostationary Phases with Selectivity for Electrokinetic Chromatography. Anal. Chem. 67, 1722–1726 (1995).
dc.relationBazzanella, A. et al. Highly efficient separation of amines by electrokinetic chromatography using resorcarene-octacarboxylic acids as pseudostationary phases. J. Chromatogr. A 792, 143–149 (1997).
dc.relationBazzanella, A., Bächmann, K., Milbradt, R., Böhmer, V. & Vogt, W. Discontinuous electrokinetic chromatography of parabens using different substituted resonances as pseudostationary phases. Electrophoresis 20, 92–99 (1999).
dc.relationLi, N., Harrison, R. G. & Lamb, J. D. Application of resorcinarene derivatives in chemical separations. J. Incl. Phenom. Macrocycl. Chem. 78, 39–60 (2014).
dc.relationZwir-Ferenc, A. & Biziuk, M. Solid phase extraction technique - Trends, opportunities and applications. Polish J. Environ. Stud. 15, 677–690 (2006).
dc.relationPuttreddy, R. et al. Host–guest complexes of conformationally flexible C -hexyl-2- bromoresorcinarene and aromatic N -oxides: solid-state, solution and computational studies . Beilstein J. Org. Chem. 14, 1723–1733 (2018).
dc.relationBallester, P. & Biros, S. M. CH-π and π-π Interactions as Contributors to the Guest Binding in Reversible Inclusion and Encapsulation Complexes. Importance Pi Interactions Cryst. Eng. Front. Cryst. Eng. 79–107 (2012). doi:10.1002/9781119945888.ch3
dc.relationKazakova, E. K. et al. The complexation properties of the water-soluble tetrasulfonatomethylcalix[4]resorcinarene toward α-aminoacids. J. Incl. Phenom. 43, 65–69 (2002).
dc.relationZeisel, S. H. A conceptual framework for studying and investing in precision nutrition. Front. Genet. 10, 1–11 (2019).
dc.relationWang, X. F., Zhou, Y., Xu, J. J. & Chen, H. Y. Signal-on electrochemiluminescence biosensors based on CdS-carbon nanotube nanocomposite for the sensitive detection of choline and acetylcholine. Adv. Funct. Mater. 19, 1444–1450 (2009).
dc.relationZhu, B. et al. A highly selective ratiometric visual and red-emitting fluorescent dual channel probe for imaging fluoride anions in living cells. Biosens. Bioelectron. 52, 298–303 (2014).
dc.relationPereira, N. M. et al. Electrodeposition of Co and Co composites with carbon nanotubes using choline chloride-based ionic liquids. Surf. Coatings Technol. 324, 451–462 (2017).
dc.relationAskarpour, M. et al. Beneficial effects of L-carnitine supplementation for weight management in overweight and obese adults: An updated systematic review and dose-response meta-analysis of randomized controlled trials. Pharmacological Research 151, (Elsevier Ltd, 2020).
dc.relationJones, L. L., McDonald, D. A. & Borum, P. R. Acylcarnitines: Role in brain. Prog. Lipid Res. 49, 61–75 (2010).
dc.relationRibas, G. S., Vargas, C. R. & Wajner, M. L-carnitine supplementation as a potential antioxidant therapy for inherited neurometabolic disorders. Gene 533, 469–476 (2014).
dc.relationAlves, E. et al. Acetyl-l-carnitine provides effective in vivo neuroprotection over 3,4- methylenedioximethamphetamine-induced mitochondrial neurotoxicity in the adolescent rat brain. Neuroscience 158, 514–523 (2009).
dc.relationCalabrese, V., Stella, A. M. G., Calvani, M. & Butterfield, D. A. Acetylcarnitine and cellular stress response: Roles in nutritional redox homeostasis and regulation of longevity genes. J. Nutr. Biochem. 17, 73–88 (2006).
dc.relationCahova, M. et al. Carnitine supplementation alleviates lipid metabolism derangements and protects against oxidative stress in non-obese hereditary hypertriglyceridemic rats. Appl. Physiol. Nutr. Metab. 40, 280–291 (2015).
dc.relationBenjamin Chun-Kit Tong. 乳鼠心肌提取 HHS Public Access. Physiol. Behav. 176, 139–148 (2017).
dc.relationSuchy, J., Chan, A. & Shea, T. B. Dietary supplementation with a combination of α-lipoic acid, acetyl-l-carnitine, glycerophosphocoline, docosahexaenoic acid, and phosphatidylserine reduces oxidative damage to murine brain and improves cognitive performance. Nutr. Res. 29, 70–74 (2009).
dc.relationScafidi, S., Racz, J., Hazelton, J., McKenna, M. C. & Fiskum, G. Neuroprotection by acetyl-L-carnitine after traumatic injury to the immature rat brain. Dev. Neurosci. 32, 480–487 (2011).
dc.relationZhang, R. et al. Neuroprotective effects of pre-treament with L-carnitine and Acetyl L-carnitine on ischemic injury in vivo and in vitro. Int. J. Mol. Sci. 13, 2078–2090 (2012)
dc.relationPatel, S. P., Sullivan, P. G., Lyttle, T. S., Magnuson, D. S. K. & Rabchevsky, A. G. Acetyl-l-carnitine treatment following spinal cord injury improves mitochondrial function correlated with remarkable tissue sparing and functional recovery. Neuroscience 210, 296–307 (2012).
dc.relationKocsis, K. et al. Acetyl-L-carnitine and oxaloacetate in post-treatment against LTP impairment in a rat ischemia model. An in vitro electrophysiological study. J. Neural Transm. 122, 867–872 (2015).
dc.relationHota, S. K., Chaurasia, O. P. & Singh, S. B. Acetyl-L-carnitine mediated neuroprotection during hypoxia is attributed to ERK1/2-Nrf2-regulated mitochondrial biosynthesis. Hippocampus 22, 723–736 (2012).
dc.relationBarhwal, K., Hota, S. K., Prasad, D., Singh, S. B. & Ilavazhagan, G. Hypoxia induced deactivation of NGF-mediated ERK1/2 signaling in hippocampal cells: Neuroprotection by acetyl-L-carnitine. J. Neurosci. Res. 86, 2705–2721 (2008).
dc.relationIshii, T.; Shimpo, Y.; Matsuoka, Y.; Kinoshit, K. 2000.pdf.
dc.relationWainwright, M. S., Mannix, M. K., Brown, J. & Stumpf, D. A. L-Carnitine Reduces Brain Injury after Hypoxia-Ischemia in Newborn Rats. Pediatr. Res. 54, 688–695 (2003).
dc.relationWainwright, M. S., Kohli, R., Whitington, P. F. & Chace, D. H. Carnitine treatment inhibits increases in cerebral carnitine esters and glutamate detected by mass spectrometry after hypoxia-ischemia in newborn rats. Stroke 37, 524–530 (2006).
dc.relationRoe, C. R. et al. Metabolic response to carnitine in methylmalonic aciduria. Arch. Dis. Child. 58, 916–920 (1983).
dc.relationVieira Neto, E. et al. Analysis of acylcarnitine profiles in umbilical cord blood and during the early neonatal period by electrospray ionization tandem mass spectrometry. Brazilian J. Med. Biol. Res. 45, 546–556 (2012).
dc.relationSchmidt-Sommerfeld, E. et al. Quantitation of urinary carnitine esters in a patient with medium-chain acyl-coenzyme A dehydrogenase deficiency: Effect of metabolic state and l-carnitine therapy. J. Pediatr. 115, 577–582 (1989).
dc.relationRashed, M. S., Ozand, P. T., Bucknall, M. P. & Little, D. Diagnosis of inborn errors of metabolism from blood spots by acylcarnitines and amino acids profiling using automated electrospray tandem mass spectrometry. Pediatr. Res. 38, 324–331 (1995)
dc.relationRibas, G. S. et al. Reduction of lipid and protein damage in patients with disorders of propionate metabolism under treatment: a possible protective role of l-carnitine supplementation. Int. J. Dev. Neurosci. 28, 127–132 (2010).
dc.relationAl-Sharefi, A. & Bilous, R. Reversible weakness and encephalopathy while on long term valproate treatment due to carnitine deficiency. BMJ Case Rep. 2015, 1–3 (2015).
dc.relationKim, H. et al. Acquired encephalopathy associated with carnitine deficiency after cefditoren pivoxil administration. Neurol. Sci. 33, 1393–1396 (2012).
dc.relationLuis Casas-Hinestroza, J. & Maldonado, M. Conformational Aspects of the O acetylation of C-tetra(phenyl)calixpyrogallol[4]arene. Molecules 23, (2018).
dc.relationFranco, L. S., Salamanca, Y. P., Maldonado, M. & Vargas, E. F. Lina S. Franco, † Yina P. Salamanca, †,‡ Mauricio Maldonado, ‡ and Edgar F. Vargas* ,†. 1042– 1044 (2010).
dc.relationPlachkova-Petrova, D., Petrova, P., Miloshev, S. & Novakov, C. Optimization of reaction conditions for synthesis C-tetramethylcalix[4] resorcinarene. Bulg. Chem. Commun. 44, 208–215 (2012).
dc.relationMorikawa, O. et al. Host-guest complexation behavior of resorcinarenes with tetraalkylammonium ions and N-methylpyridinium ions in methanol: The effect of bulky hydrophobic substituents at the extra-annular positions. Phosphorus, Sulfur Silicon Relat. Elem. 181, 2877–2886 (2006).
dc.relationJ.-M. Lehn. Supramolecular Chemistry-Scope and Perspectives Molecules, Supermolecules, and Molecular Devices (Nobel Lecture). Angew. Chemie Int. Ed. English 27, 89–112 (1988).
dc.relationLehn, J. ‐M. Supramolecular chemistry — Molecular information and the design of supramolecular materials. Makromol. Chemie. Macromol. Symp. 69, 1–17 (1993).
dc.relationPastor, A. & Martínez-Viviente, E. NMR spectroscopy in coordination supramolecular chemistry: A unique and powerful methodology. Coord. Chem. Rev. 252, 2314–2345 (2008).
dc.relationOngkudon, C. M., Kansil, T. & Wong, C. Challenges and strategies in the preparation of large-volume polymer-based monolithic chromatography adsorbents. J. Sep. Sci. 37, 455–464 (2014).
dc.relationEeltink, S. & Svec, F. Recent advances in the control of morphology and surface chemistry of porous polymer-based monolithic stationary phases and their application in CEC. Electrophoresis 28, 137–147 (2007).
dc.relationHorák, D. et al. The effect of polymeric porogen on the properties of macroporous poly(glycidyl methacrylate-co-ethylene dimethacrylate). Polymer (Guildf). 34, 3481– 3489 (1993).
dc.relationMustafina, A. R., Elistratova, Y. G., Syakaev, V. V., Amirov, R. R. & Konovalova, A. I. Receptor properties of calix[4]resorcinarenes toward tetramethylammonium and choline cations in micellar solutions of sodium dodecyl sulfate. Russ. Chem. Bull. 55, 1419–1424 (2006).
dc.relationPaquin, F., Rivnay, J., Salleo, A., Stingelin, N. & Silva, C. Multi-phase semicrystalline microstructures drive exciton dissociation in neat plastic semiconductors. J. Mater. Chem. C 3, 10715–10722 (2015).
dc.relationMerhar, M., Podgornik, A., Barut, M., Žigon, M. & Štrancar, A. Methacrylate monoliths prepared from various hydrophobic and hydrophilic monomers - Structural and chromatographic characteristics. J. Sep. Sci. 26, 322–330 (2003).
dc.relationErmakova, A. M. et al. Nanoconjugates of a calixresorcinarene derivative with methoxy poly(ethylene glycol) fragments for drug encapsulation. Beilstein J. Nanotechnol. 9, 2057–2070 (2018).
dc.rightsReconocimiento 4.0 Internacional
dc.rightshttp://creativecommons.org/licenses/by/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightsDerechos reservados al autor, 2022
dc.titleObtención de una superficie polimérica con base en metacrilatos modificada con resorcinarenos y evaluación de su aplicación en la preconcentración de carnitina por la técnica de extracción en fase sólida
dc.typeTrabajo de grado - Maestría


Este ítem pertenece a la siguiente institución