dc.contributor | Maldonado Villamil, Mauricio | |
dc.contributor | Aplicaciones Analíticas de Compuestos Orgánicos (Aaco) | |
dc.creator | Ramírez Perdomo, Gabriel Andrés | |
dc.date.accessioned | 2023-01-12T16:16:04Z | |
dc.date.available | 2023-01-12T16:16:04Z | |
dc.date.created | 2023-01-12T16:16:04Z | |
dc.date.issued | 2022 | |
dc.identifier | https://repositorio.unal.edu.co/handle/unal/82893 | |
dc.identifier | Universidad Nacional de Colombia | |
dc.identifier | Repositorio Institucional Universidad Nacional de Colombia | |
dc.identifier | https://repositorio.unal.edu.co/ | |
dc.description.abstract | Este trabajo de investigación tiene como objetivo la síntesis y caracterización de resorcinarenos tipo corona para modificar una superficie polimérica con base en metacrilatos y evaluar la interacción molecular y su capacidad de preconcentración con L-carnitina.
La investigación se realizó en cinco etapas: En la primera etapa se desarrolló la síntesis de los resorcinarenos de partida entre el resorcinol y propanal y/o heptanal obteniendo como resultado los productos C-tetra(etil)calix[4]resorcinareno (1A) y C-tetra(hexil)calix[4]resorcinareno (1B), los cuales fueron caracterizados por diferentes técnicas instrumentales tales como IR-ATR, RMN-1H, RMN-13C y espectrometría de masas obteniendo como un único confórmero el tipo corona de gran utilidad por su facilidad de formar sistemas tipo host-guest.
En la segunda etapa se evaluó la interacción host-guest (huésped-hospedero) en solución entre los resorcinarenos C-tetra(etil)calix[4]resorcinareno (1A) y C-tetra(hexil) calix[4]resorcinareno (1B) con L-carnitina (1C),este se realizó en disolucion acuosa donde se evaluó mediante RMN-1H y espectrometría de masas evidenciando una interacción entre ellos debido a la cavidad existente entre los resorcinarenos gracias a sus interacciones tipo π.
La tercera etapa consistió en la copolimerización entre el butilmetacrilato (BMA) y etilendimetacrilato (EDMA) y su modificación física con los resorcinarenos (1A y 1B) el material polímero se caracterizó a través de IR y SEM – MEB
En la cuarta etapa se evalúan las variables de tiempo, solvente, volumen de carga, concentración y pH. Elegidas las mejores condiciones estas se aplican en la última etapa para la cuantificación de la L-carnitina (1C) partiendo del material polímero modificado con resorcinarenos (1A y 1B) mediante cromatografía líquida acoplada a masas. | |
dc.description.abstract | This research work aims to synthesize and characterize corona-type resorcinarenes to modify a methacrylate-based polymeric surface and to evaluate the molecular interaction and their preconcentration ability with L-carnitine.
The research was carried out in five stages: In the first stage, the synthesis of the starting resorcinarenes between resorcinol and propanal and/or heptanal was developed obtaining as a result the products C-tetra(ethyl)calix[4]resorcinarene (1A) and C-tetra(hexyl)calix[4]resorcinarene (1B), which were characterized by different instrumental techniques such as IR-ATR, 1H-NMR, 13C-NMR and mass spectrometry obtaining as a single conformer the crown type of great utility for its ease of forming host-guest systems.
In the second stage, the host-guest interaction in solution between the resorcinarenes C-tetra(ethyl)calix[4]resorcinarene (1A) and C-tetra(hexyl)calix[4]resorcinarene (1B) with L-carnitine (1C) was evaluated, This was performed in aqueous solution where it was evaluated by 1H-NMR and mass spectrometry evidencing an interaction between them due to the existing cavity between the resorcinarenes thanks to their π-type interactions.
The third stage consisted of the copolymerization between butylmethacrylate (BMA) and ethylenedimethacrylate (EDMA) and its physical modification with resorcinarenes (1A and 1B) the polymer material was characterized by IR and SEM-MEB.
In the fourth stage, the variables of time, solvent, loading volume, concentration and pH are evaluated. Once the best conditions are chosen, these are applied in the last stage for the quantification of L-carnitine (1C) from the polymer material modified with resorcinarenes (1A and 1B) by mass-coupled liquid chromatography. | |
dc.language | spa | |
dc.publisher | Universidad Nacional de Colombia | |
dc.publisher | Bogotá - Ciencias - Maestría en Ciencias - Química | |
dc.publisher | Facultad de Ciencias | |
dc.publisher | Bogotá, Colombia | |
dc.publisher | Universidad Nacional de Colombia - Sede Bogotá | |
dc.relation | Pitt, M. A. & Johnson, D. W. Main group supramolecular chemistry. Chem. Soc.
Rev. 36, 1441–1453 (2007). | |
dc.relation | Izatt, R. M. Charles J. Pedersen’s legacy to chemistry. Chem. Soc. Rev. 46, 2380–
2384 (2017). | |
dc.relation | Agrawal, Y. K. & Patadia, R. N. Studies on resorcinarenes and their analytical
applications. Rev. Anal. Chem. 25, 155–239 (2006). | |
dc.relation | Morand, R., Donzelli, M., Haschke, M. & Krähenbühl, S. Quantification of plasma
carnitine and acylcarnitines by high-performance liquid chromatography-tandem
mass spectrometry using online solid-phase extraction. Anal. Bioanal. Chem. 405,
8829–8836 (2013). | |
dc.relation | Johnson, D. W. An acid hydrolysis method for quantification of plasma free and
total carnitine by flow injection tandem mass spectrometry. Clin. Biochem. 43,
1362–1367 (2010). | |
dc.relation | Zhang, Z. et al. Electrochemical enzyme biosensor for carnitine detection based on
cathodic stripping voltammetry. Sensors Actuators, B Chem. 321, 128473 (2020). | |
dc.relation | Wang, M. et al. A simple and precise method for measurement of serum free
carnitine and acylcarnitines by isotope dilution HILIC-ESI-MS/MS. Int. J. Mass
Spectrom. 446, 116208 (2019). | |
dc.relation | Seline, K. G. & Johein, H. The determination of l-carnitine in several food samples.
Food Chem. 105, 793–804 (2007). | |
dc.relation | Lu, W. H. et al. Using matrix-induced ion suppression combined with LC-MS/MS for
quantification of trimethylamine-N-oxide, choline, carnitine and acetylcarnitine in
dried blood spot samples. Anal. Chim. Acta 1149, 338214 (2021). | |
dc.relation | Rudolph, W., Remane, D., Wissenbach, D. K. & Peters, F. T. Liquid
chromatography-mass spectrometry-based determination of ergocristine,
ergocryptine, ergotamine, ergovaline, hypoglycin A, lolitrem B, methylene
cyclopropyl acetic acid carnitine, N-acetylloline, N-formylloline, paxilline, and
peramine in equine hai. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 1117,
127–135 (2019). | |
dc.relation | Minkler, P. E., Stoll, M. S. K., Ingalls, S. T., Kerner, J. & Hoppel, C. L. Validated
Method for the Quantification of Free and Total Carnitine, Butyrobetaine, and
Acylcarnitines in Biological Samples. Anal. Chem. 87, 8994–9001 (2015). | |
dc.relation | Ahn, J. H., Kwak, B. M., Park, J. M., Kim, N. K. & Kim, J. M. Rapid determination of
L-carnitine in infant and toddler formulas by liquid chromatography tandem mass
spectrometry. Korean J. Food Sci. Anim. Resour. 34, 749–756 (2014). | |
dc.relation | Prokorátová, V., Kvasnička, F., Ševčík, R. & Voldřich, M. Capillary electrophoresis
determination of carnitine in food supplements. J. Chromatogr. A 1081, 60–64
(2005). | |
dc.relation | Tan, X. et al. Novel competitive fluorescence sensing platform for l-carnitine based
on cationic pillar[5]arene modified gold nanoparticles. Sensors (Switzerland) 18,
(2018). | |
dc.relation | Chen, Y. C., Tsai, C. J. & Feng, C. H. Fluorescent derivatization combined with
aqueous solvent-based dispersive liquid-liquid microextraction for determination of
butyrobetaine, L-carnitine and acetyl-L-carnitine in human plasma. J. Chromatogr.
A 1464, 32–41 (2016) | |
dc.relation | Manjón, A., Obón, J. M. & Iborra, J. L. Determination of L-carnitine by flow injection
analysis with NADH fluorescence detection. Anal. Biochem. 281, 176–181 (2000). | |
dc.relation | He, Q., Vargas-Zúñiga, G. I., Kim, S. H., Kim, S. K. & Sessler, J. L. Macrocycles as
Ion Pair Receptors. Chem. Rev. 119, 9753–9835 (2019). | |
dc.relation | Ruiz-Botella, S., Vidossich, P., Ujaque, G., Vicent, C. & Peris, E. A Tetraferrocenyl Resorcinarene Cavitand as a Redox-Switchable Host of Ammonium Salts. Chem. -
A Eur. J. 21, 10558–10565 (2015). | |
dc.relation | Taylor, P. J. Matrix effects: The Achilles heel of quantitative high-performance
liquid chromatography-electrospray-tandem mass spectrometry. Clin. Biochem. 38,
328–334 (2005). | |
dc.relation | Huang, Z. et al. Determination of inorganic pharmaceutical counterions using
hydrophilic interaction chromatography coupled with a Corona® CAD detector. J.
Pharm. Biomed. Anal. 50, 809–814 (2009). | |
dc.relation | Johnson, W. M., Kido Soule, M. C. & Kujawinski, E. B. Extraction efficiency and
quantification of dissolved metabolites in targeted marine metabolomics. Limnol.
Oceanogr. Methods 15, 417–428 (2017). | |
dc.relation | Lee, M. et al. Selective solid-phase extraction of catecholamines by the chemically
modified polymeric adsorbents with crown ether. J. Chromatogr. A 1160, 340–344
(2007). | |
dc.relation | Chen, L. Q. et al. High-throughput and selective solid-phase extraction of urinary
catecholamines by crown ether-modified resin composite fiber. J. Chromatogr. A
1561, 48–55 (2018). | |
dc.relation | Castillo-Aguirre, A. & Maldonado, M. Preparation of methacrylate-based polymers
modified with chiral resorcinarenes and their evaluation as sorbents in
norepinephrine microextraction. Polymers (Basel). 11, 1–21 (2019). | |
dc.relation | Velásquez-Silva, B. A., Castillo-Aguirre, A., Rivera-Monroy, Z. J. & Maldonado, M.
Aminomethylated calix[4]resorcinarenes as modifying agents for glycidyl
methacrylate (GMA) rigid copolymers surface. Polymers (Basel). 11, (2019). | |
dc.relation | Baeyer, A. Ueber die Verbindungen der Aldehyde mit den Phenolen und
aromatischen Kohlenwasserstoffen. Berichte der Dtsch. Chem. Gesellschaft 5,
1094–1100 (1872). | |
dc.relation | Niederl, J. & Vogel, H. Aldeyde-Resorcinol Condensations. J. Am. Chem. Soc. 62,
2512 (1940). | |
dc.relation | Holger Erdtman and Sverker Hogberg. Tetrahedron Lett. 1679–1682 (1968). | |
dc.relation | Jain, V. K. & Kanaiya, P. H. Chemistry of calix[4]resorcinarenes. Russ. Chem. Rev.
80, 75–102 (2011). | |
dc.relation | In, R., Recognition, M. & Devices, S. and Supramolecular Devices. 67–94 (1999). | |
dc.relation | Calixarenes: a versa tile class of macrocyclic compounds. | |
dc.relation | Verboom, W., Durie, A., Egberink, R. J. M., Asfari, Z. & Reinhoudt, D. N. Ipso
Nitration of p-tert-Butylcalix[4]arenes. J. Org. Chem. 57, 1313–1316 (1992). | |
dc.relation | Cram, D. J. The Design of Molecular Hosts, Guests, and Their Complexes (Nobel
Lecture). Angew. Chemie Int. Ed. English 27, 1009–1020 (1988). | |
dc.relation | Schneider, U. & Schneider, H. ‐J. Synthese und Eigenschaften von Makrocyclen
aus Resorcinen sowie von entsprechenden Derivaten und Wirt‐Gast‐Komplexen.
Chem. Ber. 127, 2455–2469 (1994). | |
dc.relation | Pfeiffer, C. R., Feaster, K. A., Dalgarno, S. J. & Atwood, J. L. Syntheses and
characterization of aryl-substituted pyrogallol[4]arenes and resorcin[4]arenes.
CrystEngComm 18, 222–229 (2015). | |
dc.relation | de Namor, A. F. D. et al. Thermodynamic and electrochemical aspects of the
interactions of functionalised calix(4)arenes and metal cations in ‘allosteric media’’’.
Pure Appl. Chem. 66, 435–440 (1994). | |
dc.relation | Iwanek, W. The synthesis of octamethoxyresorc[4]arenes catalysed by Lewis
acids. Tetrahedron 54, 14089–14094 (1998). | |
dc.relation | McIldowie, M. J., Mocerino, M., Skelton, B. W. & White, A. H. Facile Lewis Acid
Catalyzed Synthesis of C4 Symmetric Resorcinarenes. Org. Lett. 2, 3869–3871
(2000). | |
dc.relation | Yamakawa, Y., Ueda, M., Nagahata, R., Takeuchi, K. & Asai, M. Rapid synthesis
of dendrimers based on calix[4]resorcinarenes. J. Chem. Soc. - Perkin Trans. 1
4135–4139 (1998). doi:10.1039/a806475j | |
dc.relation | Kijima, T.; Kato, Y.; Ohe, K.; et al. Bull. Chem. Soc. Jpn. 1994.pdf. | |
dc.relation | Lewis, P. T. et al. Tetraarylboronic Acid Resorcinarene Stereoisomers. Versatile
New Substrates for Divergent Polyfunctionalization and Molecular Recognition. J.
Org. Chem. 62, 6110–6111 (1997). | |
dc.relation | Beer, P. D. Meldola Medal Lecture. Redox responsive macrocyclic receptor molecules containing transition metal redox centres. Chem. Soc. Rev. 18, 409–450
(1989). | |
dc.relation | Curtis, A. D. M. Novel Calix[4]resorcinarene glycosides. Tetrahedron Lett. 38,
4295–4296 (1997). | |
dc.relation | Aoyama, Y., Tanaka, Y. & Sugahara, S. Molecular Recognition. 5. Molecular
Recognition. 68, 5397–5404 (1989) | |
dc.relation | Gibb, B. C., Chapman, R. G., Sherman, J. C. & Soc, D. J. J. A. C. Synthesis of
Hydroxyl-Footed Cavitands their rigidity , enforced cavities , and synthetic viability .
Thus , the incorporation of new functionalities into the pendant groups of these
compounds would expand their versatility toward future applications . Fo.
Reactions 1505–1509 (1996). | |
dc.relation | Kobayashi, K., Asakawa, Y., Kato, Y. & Aoyama, Y. Complexation of Hydrophobic
Sugars and Nucleosides in Water with Tetrasulfonate Derivatives of Resorcinol
Cyclic Tetramer Having a Polyhydroxy Aromatic Cavity: Importance of Guest–Host
CH–π Interaction. J. Am. Chem. Soc. 114, 10307–10313 (1992). | |
dc.relation | Scott, M. P. & Sherburn, M. S. Resorcinarenes and Pyrogallolarenes.
Comprehensive Supramolecular Chemistry II 1, (Elsevier, 2017). | |
dc.relation | Tunstad, L. M. et al. Host-Guest Complexation. 48. Octol Building Blocks for
Cavitands and Carcerands. J. Org. Chem. 54, 1305–1312 (1989). | |
dc.relation | Morikawa, O., Ueno, R., Nakajima, K., Kobayashi, K. & Konishi, H.
Trifluoromethanesulfonic acid-catalyzed synthesis of resorcinarenes:
Cyclocondensation of 2-bromoresorcinol with aldehydes. Synthesis (Stuttg). 761–
765 (2002). doi:10.1055/s-2002-25765 | |
dc.relation | Beyeh, N. K. & Rissanen, K. Tetranitroresorcin[4]arene: synthesis and structure of
a new stereoisomer. Tetrahedron Lett. 50, 7369–7373 (2009). | |
dc.relation | Bourgeois, J. M. & Stoeckli-Evans, H. Synthesis of new resorcinarenes under
alkaline conditions. Helv. Chim. Acta 88, 2722–2730 (2005). | |
dc.relation | Vicens, J. & Vicens, Q. Origins and emergences of supramolecular chemistry. J.
Incl. Phenom. Macrocycl. Chem. 65, 221–235 (2009). | |
dc.relation | Weinelt, F. & Schneider, H. J. Mechanisms of Macrocycle Genesis. The
Condensation of Resorcinol with Aldehydes. J. Org. Chem. 56, 5527–5535 (1991). | |
dc.relation | Sverker Hógberg, A. G. Stereoselective Synthesis and DNMR Study of Two
1,8,15,22-T etraphenyl [I4]metacyclophan-3,5,10,12,17,19,24,26-octolss. J. Am.
Chem. Soc. 102, 6046–6050 (1980). | |
dc.relation | Ma, B. Q. & Coppens, P. A novel scoop-shaped conformation of C methylcalix[4]resorcinarene in a bilayer structure. Chem. Commun. 2, 424–425
(2002). | |
dc.relation | Abis, L., Dalcanale, E., Du vosel, A. & Sperala, S. Structurally New Macrocycles
from the Resorcinol-Aldehyde Condensation. Configurational and Conformational
Analyses by Means of Dynamic NMR, NOE, and T1 Experiments. J. Org. Chem.
53, 5475–5479 (1988). | |
dc.relation | Timmerman W.; Reinhoudt, D. N. P. . V., Timmerman W.; Reinhoudt, D. N. P. . V.
& Timmerman W.; Reinhoudt, D. N. P. . V. Resorcinarenes. Tetrahedron 52,
2663–2704 (1996). | |
dc.relation | Sanabria, E., Esteso, M. A., Pérez-Redondo, A., Vargas, E. & Maldonado, M.
Synthesis and characterization of two sulfonated resorcinarenes: A new example of
a linear array of sodium centers and macrocycles. Molecules 20, 9915–9928
(2015). | |
dc.relation | Velásquez-Silva, A., Cortés, B., Rivera-Monroy, Z. J., Pérez-Redondo, A. &
Maldonado, M. Crystal structure and dynamic NMR studies of octaacetyl tetra(propyl)calix[4]resorcinarene. J. Mol. Struct. 1137, 380–386 (2017). | |
dc.relation | Castillo-Aguirre, A., Esteso, M. A. & Maldonado, M. Resorcin[4]arenes:
Generalities and Their Role in the Modification and Detection of Amino Acids. Curr.
Org. Chem. 24, 2412–2425 (2020). | |
dc.relation | Fabbri, P. & Messori, M. Surface Modification of Polymers: Chemical, Physical, and
Biological Routes. Modification of Polymer Properties (Elsevier Inc., 2017).
doi:10.1016/B978-0-323-44353-1.00005-1 | |
dc.relation | Fader, R. et al. Novel organic polymer for UV-enhanced substrate conformal
imprint lithography. Microelectron. Eng. 98, 238–241 (2012). | |
dc.relation | Maldonado, M., Sanabria, E., Batanero, B. & Esteso, M. Á. Apparent molal volume
and viscosity values for a new synthesized diazoted resorcin[4]arene in DMSO at
several temperatures. J. Mol. Liq. 231, 142–148 (2017). | |
dc.relation | Sokoließ, T., Menyes, U., Roth, U. & Jira, T. Separation of cis- and trans-isomers of
thioxanthene and dibenz[b,e]oxepin derivatives on calixarene- and resorcinarene bonded high-performance liquid chromatography stationary phases. J. Chromatogr.
A 948, 309–319 (2002). | |
dc.relation | Ruderisch, A. et al. Synthesis and characterization of a novel resorcinarene-based
stationary phase bearing polar headgroups for use in reversed-phase high performance liquid chromatography. J. Chromatogr. A 1095, 40–49 (2005). | |
dc.relation | Aghazadeh-Habashi, A., Asghar, W. & Jamali, F. Simultaneous determination of
selected eicosanoids by reversed-phase HPLC method using fluorescence
detection and application to rat and human plasma, and rat heart and kidney
samples. J. Pharm. Biomed. Anal. 110, 12–19 (2015). | |
dc.relation | Synthesis, A. 3 , 3 0 -Diaryl-BINOL Phosphoric Acids as Enantioselective
Extractants of Benzylic Primary Amines. 43, 34–43 (2011). | |
dc.relation | Lipkowski, J. et al. Host-guest interactions of calix[4]resorcinarenes with benzene derivatives in conditions of reversed-phase high-performance liquid chromatography. Determination of stability constants. J. Phys. Org. Chem. 11,
426–437 (1998). | |
dc.relation | Zhang, H. et al. Resorcarene derivative used as a new stationary phase for
capillary gas chromatography. J. Chromatogr. A 787, 161–169 (1997). | |
dc.relation | Bachmann, K. et al. Resorcarenes as Pseudostationary Phases with Selectivity for
Electrokinetic Chromatography. Anal. Chem. 67, 1722–1726 (1995). | |
dc.relation | Bazzanella, A. et al. Highly efficient separation of amines by electrokinetic
chromatography using resorcarene-octacarboxylic acids as pseudostationary
phases. J. Chromatogr. A 792, 143–149 (1997). | |
dc.relation | Bazzanella, A., Bächmann, K., Milbradt, R., Böhmer, V. & Vogt, W. Discontinuous
electrokinetic chromatography of parabens using different substituted resonances
as pseudostationary phases. Electrophoresis 20, 92–99 (1999). | |
dc.relation | Li, N., Harrison, R. G. & Lamb, J. D. Application of resorcinarene derivatives in
chemical separations. J. Incl. Phenom. Macrocycl. Chem. 78, 39–60 (2014). | |
dc.relation | Zwir-Ferenc, A. & Biziuk, M. Solid phase extraction technique - Trends,
opportunities and applications. Polish J. Environ. Stud. 15, 677–690 (2006). | |
dc.relation | Puttreddy, R. et al. Host–guest complexes of conformationally flexible C -hexyl-2-
bromoresorcinarene and aromatic N -oxides: solid-state, solution and
computational studies . Beilstein J. Org. Chem. 14, 1723–1733 (2018). | |
dc.relation | Ballester, P. & Biros, S. M. CH-π and π-π Interactions as Contributors to the Guest
Binding in Reversible Inclusion and Encapsulation Complexes. Importance Pi Interactions Cryst. Eng. Front. Cryst. Eng. 79–107 (2012). doi:10.1002/9781119945888.ch3 | |
dc.relation | Kazakova, E. K. et al. The complexation properties of the water-soluble
tetrasulfonatomethylcalix[4]resorcinarene toward α-aminoacids. J. Incl. Phenom.
43, 65–69 (2002). | |
dc.relation | Zeisel, S. H. A conceptual framework for studying and investing in precision
nutrition. Front. Genet. 10, 1–11 (2019). | |
dc.relation | Wang, X. F., Zhou, Y., Xu, J. J. & Chen, H. Y. Signal-on electrochemiluminescence
biosensors based on CdS-carbon nanotube nanocomposite for the sensitive
detection of choline and acetylcholine. Adv. Funct. Mater. 19, 1444–1450 (2009). | |
dc.relation | Zhu, B. et al. A highly selective ratiometric visual and red-emitting fluorescent dual channel probe for imaging fluoride anions in living cells. Biosens. Bioelectron. 52,
298–303 (2014). | |
dc.relation | Pereira, N. M. et al. Electrodeposition of Co and Co composites with carbon
nanotubes using choline chloride-based ionic liquids. Surf. Coatings Technol. 324,
451–462 (2017). | |
dc.relation | Askarpour, M. et al. Beneficial effects of L-carnitine supplementation for weight
management in overweight and obese adults: An updated systematic review and
dose-response meta-analysis of randomized controlled trials. Pharmacological
Research 151, (Elsevier Ltd, 2020). | |
dc.relation | Jones, L. L., McDonald, D. A. & Borum, P. R. Acylcarnitines: Role in brain. Prog.
Lipid Res. 49, 61–75 (2010). | |
dc.relation | Ribas, G. S., Vargas, C. R. & Wajner, M. L-carnitine supplementation as a potential
antioxidant therapy for inherited neurometabolic disorders. Gene 533, 469–476
(2014). | |
dc.relation | Alves, E. et al. Acetyl-l-carnitine provides effective in vivo neuroprotection over 3,4-
methylenedioximethamphetamine-induced mitochondrial neurotoxicity in the
adolescent rat brain. Neuroscience 158, 514–523 (2009). | |
dc.relation | Calabrese, V., Stella, A. M. G., Calvani, M. & Butterfield, D. A. Acetylcarnitine and
cellular stress response: Roles in nutritional redox homeostasis and regulation of
longevity genes. J. Nutr. Biochem. 17, 73–88 (2006). | |
dc.relation | Cahova, M. et al. Carnitine supplementation alleviates lipid metabolism
derangements and protects against oxidative stress in non-obese hereditary
hypertriglyceridemic rats. Appl. Physiol. Nutr. Metab. 40, 280–291 (2015). | |
dc.relation | Benjamin Chun-Kit Tong. 乳鼠心肌提取 HHS Public Access. Physiol. Behav. 176,
139–148 (2017). | |
dc.relation | Suchy, J., Chan, A. & Shea, T. B. Dietary supplementation with a combination of α-lipoic acid, acetyl-l-carnitine, glycerophosphocoline, docosahexaenoic acid, and
phosphatidylserine reduces oxidative damage to murine brain and improves
cognitive performance. Nutr. Res. 29, 70–74 (2009). | |
dc.relation | Scafidi, S., Racz, J., Hazelton, J., McKenna, M. C. & Fiskum, G. Neuroprotection
by acetyl-L-carnitine after traumatic injury to the immature rat brain. Dev. Neurosci.
32, 480–487 (2011). | |
dc.relation | Zhang, R. et al. Neuroprotective effects of pre-treament with L-carnitine and Acetyl L-carnitine on ischemic injury in vivo and in vitro. Int. J. Mol. Sci. 13, 2078–2090
(2012) | |
dc.relation | Patel, S. P., Sullivan, P. G., Lyttle, T. S., Magnuson, D. S. K. & Rabchevsky, A. G.
Acetyl-l-carnitine treatment following spinal cord injury improves mitochondrial
function correlated with remarkable tissue sparing and functional recovery.
Neuroscience 210, 296–307 (2012). | |
dc.relation | Kocsis, K. et al. Acetyl-L-carnitine and oxaloacetate in post-treatment against LTP
impairment in a rat ischemia model. An in vitro electrophysiological study. J. Neural
Transm. 122, 867–872 (2015). | |
dc.relation | Hota, S. K., Chaurasia, O. P. & Singh, S. B. Acetyl-L-carnitine mediated neuroprotection during hypoxia is attributed to ERK1/2-Nrf2-regulated mitochondrial biosynthesis. Hippocampus 22, 723–736 (2012). | |
dc.relation | Barhwal, K., Hota, S. K., Prasad, D., Singh, S. B. & Ilavazhagan, G. Hypoxia induced deactivation of NGF-mediated ERK1/2 signaling in hippocampal cells:
Neuroprotection by acetyl-L-carnitine. J. Neurosci. Res. 86, 2705–2721 (2008). | |
dc.relation | Ishii, T.; Shimpo, Y.; Matsuoka, Y.; Kinoshit, K. 2000.pdf. | |
dc.relation | Wainwright, M. S., Mannix, M. K., Brown, J. & Stumpf, D. A. L-Carnitine Reduces
Brain Injury after Hypoxia-Ischemia in Newborn Rats. Pediatr. Res. 54, 688–695
(2003). | |
dc.relation | Wainwright, M. S., Kohli, R., Whitington, P. F. & Chace, D. H. Carnitine treatment
inhibits increases in cerebral carnitine esters and glutamate detected by mass
spectrometry after hypoxia-ischemia in newborn rats. Stroke 37, 524–530 (2006). | |
dc.relation | Roe, C. R. et al. Metabolic response to carnitine in methylmalonic aciduria. Arch.
Dis. Child. 58, 916–920 (1983). | |
dc.relation | Vieira Neto, E. et al. Analysis of acylcarnitine profiles in umbilical cord blood and
during the early neonatal period by electrospray ionization tandem mass
spectrometry. Brazilian J. Med. Biol. Res. 45, 546–556 (2012). | |
dc.relation | Schmidt-Sommerfeld, E. et al. Quantitation of urinary carnitine esters in a patient
with medium-chain acyl-coenzyme A dehydrogenase deficiency: Effect of
metabolic state and l-carnitine therapy. J. Pediatr. 115, 577–582 (1989). | |
dc.relation | Rashed, M. S., Ozand, P. T., Bucknall, M. P. & Little, D. Diagnosis of inborn errors
of metabolism from blood spots by acylcarnitines and amino acids profiling using
automated electrospray tandem mass spectrometry. Pediatr. Res. 38, 324–331
(1995) | |
dc.relation | Ribas, G. S. et al. Reduction of lipid and protein damage in patients with disorders
of propionate metabolism under treatment: a possible protective role of l-carnitine
supplementation. Int. J. Dev. Neurosci. 28, 127–132 (2010). | |
dc.relation | Al-Sharefi, A. & Bilous, R. Reversible weakness and encephalopathy while on long term valproate treatment due to carnitine deficiency. BMJ Case Rep. 2015, 1–3
(2015). | |
dc.relation | Kim, H. et al. Acquired encephalopathy associated with carnitine deficiency after
cefditoren pivoxil administration. Neurol. Sci. 33, 1393–1396 (2012). | |
dc.relation | Luis Casas-Hinestroza, J. & Maldonado, M. Conformational Aspects of the O acetylation of C-tetra(phenyl)calixpyrogallol[4]arene. Molecules 23, (2018). | |
dc.relation | Franco, L. S., Salamanca, Y. P., Maldonado, M. & Vargas, E. F. Lina S. Franco, †
Yina P. Salamanca, †,‡ Mauricio Maldonado, ‡ and Edgar F. Vargas* ,†. 1042–
1044 (2010). | |
dc.relation | Plachkova-Petrova, D., Petrova, P., Miloshev, S. & Novakov, C. Optimization of reaction conditions for synthesis C-tetramethylcalix[4] resorcinarene. Bulg. Chem.
Commun. 44, 208–215 (2012). | |
dc.relation | Morikawa, O. et al. Host-guest complexation behavior of resorcinarenes with
tetraalkylammonium ions and N-methylpyridinium ions in methanol: The effect of
bulky hydrophobic substituents at the extra-annular positions. Phosphorus, Sulfur
Silicon Relat. Elem. 181, 2877–2886 (2006). | |
dc.relation | J.-M. Lehn. Supramolecular Chemistry-Scope and Perspectives Molecules,
Supermolecules, and Molecular Devices (Nobel Lecture). Angew. Chemie Int. Ed.
English 27, 89–112 (1988). | |
dc.relation | Lehn, J. ‐M. Supramolecular chemistry — Molecular information and the design of
supramolecular materials. Makromol. Chemie. Macromol. Symp. 69, 1–17 (1993). | |
dc.relation | Pastor, A. & Martínez-Viviente, E. NMR spectroscopy in coordination
supramolecular chemistry: A unique and powerful methodology. Coord. Chem.
Rev. 252, 2314–2345 (2008). | |
dc.relation | Ongkudon, C. M., Kansil, T. & Wong, C. Challenges and strategies in the
preparation of large-volume polymer-based monolithic chromatography
adsorbents. J. Sep. Sci. 37, 455–464 (2014). | |
dc.relation | Eeltink, S. & Svec, F. Recent advances in the control of morphology and surface
chemistry of porous polymer-based monolithic stationary phases and their
application in CEC. Electrophoresis 28, 137–147 (2007). | |
dc.relation | Horák, D. et al. The effect of polymeric porogen on the properties of macroporous
poly(glycidyl methacrylate-co-ethylene dimethacrylate). Polymer (Guildf). 34, 3481–
3489 (1993). | |
dc.relation | Mustafina, A. R., Elistratova, Y. G., Syakaev, V. V., Amirov, R. R. & Konovalova, A.
I. Receptor properties of calix[4]resorcinarenes toward tetramethylammonium and
choline cations in micellar solutions of sodium dodecyl sulfate. Russ. Chem. Bull.
55, 1419–1424 (2006). | |
dc.relation | Paquin, F., Rivnay, J., Salleo, A., Stingelin, N. & Silva, C. Multi-phase
semicrystalline microstructures drive exciton dissociation in neat plastic
semiconductors. J. Mater. Chem. C 3, 10715–10722 (2015). | |
dc.relation | Merhar, M., Podgornik, A., Barut, M., Žigon, M. & Štrancar, A. Methacrylate
monoliths prepared from various hydrophobic and hydrophilic monomers -
Structural and chromatographic characteristics. J. Sep. Sci. 26, 322–330 (2003). | |
dc.relation | Ermakova, A. M. et al. Nanoconjugates of a calixresorcinarene derivative with
methoxy poly(ethylene glycol) fragments for drug encapsulation. Beilstein J.
Nanotechnol. 9, 2057–2070 (2018). | |
dc.rights | Reconocimiento 4.0 Internacional | |
dc.rights | http://creativecommons.org/licenses/by/4.0/ | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.rights | Derechos reservados al autor, 2022 | |
dc.title | Obtención de una superficie polimérica con base en metacrilatos modificada con resorcinarenos y evaluación de su aplicación en la preconcentración de carnitina por la técnica de extracción en fase sólida | |
dc.type | Trabajo de grado - Maestría | |