dc.contributorOlaya Flórez, Jhon Jairo
dc.contributorMoreno, Carlos Mauricio
dc.contributorGrupo de Investigación en Corrosión, Tribologia y Energía
dc.creatorRodríguez Arévalo, Sergio Daniel
dc.date.accessioned2023-05-24T18:59:35Z
dc.date.available2023-05-24T18:59:35Z
dc.date.created2023-05-24T18:59:35Z
dc.date.issued2023
dc.identifierhttps://repositorio.unal.edu.co/handle/unal/83855
dc.identifierUniversidad Nacional de Colombia
dc.identifierRepositorio Institucional Universidad Nacional de Colombia
dc.identifierhttps://repositorio.unal.edu.co/
dc.description.abstractEn este trabajo se depositaron recubrimientos de TiAlVCuN sobre sustratos de acero inoxidable 316 L usando un sistema de cosputtering reactivo con fuentes HIPIMS y magnetrón. Como material de depósito se usó un blanco de titanio/aluminio y un blanco de vanadio/cobre. Los recubrimientos obtenidos fueron caracterizados química, microestructural y morfológicamente. La variación del voltaje de deposición en el blanco de V/Cu (con 5 niveles entre 510 V y 580 V), generó un cambio en la composición química representado principalmente en la variación de la cantidad de V, cambiando entre 3% y 12%. Estos recubrimientos exhibieron un crecimiento columnar, sin precipitaciones de Cu en la superficie. Además, se encontró una estructura cúbica tipo FCC, correspondiente con la formación de una solución sólida de TiAlVN sin presencia de Cu en estado metálico, por lo cual este probablemente podría estar disuelto en los bordes de grano de la matriz. Por otro lado, se evalúo la resistencia a la corrosión de los recubrimientos y el sustrato en dos tipos de electrolitos (Solución 3.5 wt. % de NaCl y Lactato de Ringer) a través de las técnicas de polarización potenciodinámica (TAFEL) y espectroscopia de impedancia electroquímica (EIS). El comportamiento frente a la corrosión mostrado por los recubrimientos fue similar al reportado para el sustrato. Sin embargo, el valor de la resistencia a la polarización disminuye con el aumento del voltaje de deposición. Lo anterior puede estar relacionado con un aumento en la cantidad de defectos presentes en el recubrimiento y la generación esfuerzos residuales que comprometen la adherencia de este al sustrato. (Texto tomado de la fuente)
dc.description.abstractIn this work TiAlVCuN coatings were deposited on 316 L stainless steel substrates using a reactive cosputtering system with magnetron and HIPIMS power sources. Titanium/aluminum and vanadium/copper blanks were used as deposit materials. The coatings obtained were chemically, microstructurally and morphologically characterized. The variation of the deposition voltage on the V/Cu target (with 5 levels between 510 V and 580 V), generated a change in the chemical composition represented mainly in the variation of the amount of V, changing between 3% and 12%. These coatings exhibited columnar growth, without Cu precipitation on the surface. In addition, an FCC-type cubic structure was found, corresponding to the formation of a TiAlVN solid solution without the presence of Cu in the metallic state, for which it could probably be dissolved at the grain boundaries of the matrix. On the other hand, coatings and substrate corrosion resistance was evaluated through the techniques of potentiodynamic polarization (TAFEL) and electrochemical impedance spectroscopy (EIS) using two types of electrolytes (3.5 wt. % NaCl NaCl solution and Ringer's Lactate). The corrosion behavior shown by the coatings was similar to that reported for the substrate. However, the polarization resistance value decreases with increasing deposition voltage. This could be related to an increase in the number of defects present in the coating and the generation of residual stresses that compromise its adherence to the substrate.
dc.languagespa
dc.publisherUniversidad Nacional de Colombia
dc.publisherBogotá - Ingeniería - Maestría en Ingeniería - Materiales y Procesos
dc.publisherFacultad de Ingeniería
dc.publisherBogotá, Colombia
dc.publisherUniversidad Nacional de Colombia - Sede Bogotá
dc.relationD. M. Mattox, Handbook of Physical Vapor Deposition (PVD) Processing. Elsevier Inc., 2010. Accessed: Jan. 21, 2023. [Online]. Available: http://www.sciencedirect.com:5070/book/9780815520375/handbook-of-physical-vapor-deposition-pvd-processing
dc.relationD. Lundin and K. Sarakinos, “An introduction to thin film processing using high-power impulse magnetron sputtering,” Journal of Materials Research, vol. 27, no. 5. pp. 780–792, Mar. 14, 2012. doi: 10.1557/jmr.2012.8.
dc.relationH. O. Pierson, “Interstitial Nitrides: Properties and General Characteristics BT - Handbook of Refractory Carbides and Nitrides,” Handbook of Refractory Carbides & Nitrides: Properties, Characteristics, Processing and Applications, 1996.
dc.relationY. C. Chim, X. Z. Ding, X. T. Zeng, and S. Zhang, “Oxidation resistance of TiN, CrN, TiAlN and CrAlN coatings deposited by lateral rotating cathode arc,” Thin Solid Films, vol. 517, no. 17, pp. 4845–4849, Jul. 2009, doi: 10.1016/J.TSF.2009.03.038.
dc.relationA. Liu, J. Deng, H. Cui, Y. Chen, and J. Zhao, “Friction and wear properties of TiN, TiAlN, AlTiN and CrAlN PVD nitride coatings,” Int J Refract Metals Hard Mater, vol. 31, pp. 82–88, Mar. 2012, doi: 10.1016/J.IJRMHM.2011.09.010.
dc.relationL. Aissani, A. Alhussein, C. Nouveau, L. Ghelani, and M. Zaabat, “Influence of film thickness and ArN2 plasma gas on the structure and performance of sputtered vanadium nitride coatings,” Surf Coat Technol, vol. 378, p. 124948, Nov. 2019, doi: 10.1016/J.SURFCOAT.2019.124948.
dc.relationH. Ju and J. Xu, “Influence of vanadium incorporation on the microstructure, mechanical and tribological properties of Nb–V–Si–N films deposited by reactive magnetron sputtering,” Mater Charact, vol. 107, pp. 411–418, Sep. 2015, doi: 10.1016/J.MATCHAR.2015.08.005.
dc.relationG. Li, L. Zhang, F. Cai, Y. Yang, Q. Wang, and S. Zhang, “Characterization and corrosion behaviors of TiN/TiAlN multilayer coatings by ion source enhanced hybrid arc ion plating,” Surf Coat Technol, vol. 366, pp. 355–365, May 2019, doi: 10.1016/J.SURFCOAT.2019.03.027.
dc.relationL. Wang, M. Wang, and H. Chen, “Corrosion mechanism investigation of TiAlN/CrN superlattice coating by multi-arc ion plating in 3.5 wt% NaCl solution,” Surf Coat Technol, vol. 391, p. 125660, Jun. 2020, doi: 10.1016/J.SURFCOAT.2020.125660.
dc.relationD. Li et al., “Effect of Cr interlayer on the adhesion and corrosion enhancement of nanocomposite TiN-based coatings deposited on stainless steel 410,” Thin Solid Films, vol. 519, no. 10, pp. 3128–3134, Mar. 2011, doi: 10.1016/J.TSF.2010.12.020.
dc.relationS. A. Naghibi, K. Raeissi, and M. H. Fathi, “Corrosion and tribocorrosion behavior of Ti/TiN PVD coating on 316L stainless steel substrate in Ringer’s solution,” Mater Chem Phys, vol. 148, no. 3, pp. 614–623, Dec. 2014, doi: 10.1016/J.MATCHEMPHYS.2014.08.025.
dc.relationR. Ananthakumar, B. Subramanian, A. Kobayashi, and M. Jayachandran, “Electrochemical corrosion and materials properties of reactively sputtered TiN/TiAlN multilayer coatings,” Ceram Int, vol. 38, no. 1, pp. 477–485, Jan. 2012, doi: 10.1016/J.CERAMINT.2011.07.030.
dc.relationH. D. Mejía, A. M. Echavarría, and G. Bejarano G., “Influence of Ag-Cu nanoparticles on the microstructural and bactericidal properties of TiAlN(Ag,Cu) coatings for medical applications deposited by Direct Current (DC) magnetron sputtering,” Thin Solid Films, vol. 687, p. 137460, Oct. 2019, doi: 10.1016/J.TSF.2019.137460.
dc.relationH. D. V. Mejía, A. M. Echavarría, J. A. Calderón, and G. Gilberto Bejarano, “Microstructural and electrochemical properties of TiAlN(Ag,Cu) nanocomposite coatings for medical applications deposited by DC magnetron sputtering,” J Alloys Compd, vol. 828, Jul. 2020, doi: 10.1016/j.jallcom.2020.154396.
dc.relationC. M. Cotrut, M. Balaceanu, I. Titorencu, V. Braic, and M. Braic, “ZrNbCN thin films as protective layers in biomedical applications,” Surf Coat Technol, vol. 211, pp. 57–61, Oct. 2012, doi: 10.1016/J.SURFCOAT.2011.08.016.
dc.relationV. S. Calderon, I. Ferreri, R. Escobar Galindo, M. Henriques, A. Cavaleiro, and S. Carvalho, “Electrochemical vs antibacterial characterization of ZrCN-Ag coatings,” Surf Coat Technol, vol. 275, pp. 357–362, Aug. 2015, doi: 10.1016/J.SURFCOAT.2015.04.042.
dc.relationX. B. Tian, Z. M. Wang, S. Q. Yang, Z. J. Luo, R. K. Y. Fu, and P. K. Chu, “Antibacterial copper-containing titanium nitride films produced by dual magnetron sputtering,” Surf Coat Technol, vol. 201, no. 19-20 SPEC. ISS., pp. 8606–8609, Aug. 2007, doi: 10.1016/J.SURFCOAT.2006.09.322.
dc.relationH. Mei et al., “Influence of pulse frequency on microstructure and mechanical properties of Al-Ti-V-Cu-N coatings deposited by HIPIMS,” Surf Coat Technol, vol. 405, p. 126514, Jan. 2021, doi: 10.1016/J.SURFCOAT.2020.126514.
dc.relationH. Mei et al., “Effect of Cu content on high-temperature tribological properties and oxidation behavior of Al-Ti-V-Cu-N coatings deposited by HIPIMS,” Surf Coat Technol, vol. 434, p. 128130, Mar. 2022, doi: 10.1016/J.SURFCOAT.2022.128130.
dc.relationY. Zhou, W. Guo, and T. Li, “A review on transition metal nitrides as electrode materials for supercapacitors,” Ceram Int, vol. 45, no. 17, pp. 21062–21076, Dec. 2019, doi: 10.1016/J.CERAMINT.2019.07.151.
dc.relationK. Wasa, I. Kanno, and H. Kotera, “Handbook of Sputter Deposition Technology: Fundamentals and Applications for Functional Thin Films, Nano-Materials and MEMS: Second Edition,” Handbook of Sputter Deposition Technology: Fundamentals and Applications for Functional Thin Films, Nano-Materials and MEMS: Second Edition, pp. 1–644, Nov. 2012, doi: 10.1016/C2010-0-67037-4.
dc.relation“Materials Science of Thin Films,” Materials Science of Thin Films, 2002, doi: 10.1016/B978-0-12-524975-1.X5000-9.
dc.relationD. Depla, S. Mahieu, and J. E. Greene, “Sputter Deposition Processes,” Handbook of Deposition Technologies for Films and Coatings: Science, Applications and Technology, pp. 253–296, Nov. 2009, doi: 10.1016/B978-0-8155-2031-3.00005-3.
dc.relationY. Deng, W. Chen, B. Li, C. Wang, T. Kuang, and Y. Li, “Physical vapor deposition technology for coated cutting tools: A review,” Ceram Int, vol. 46, no. 11, pp. 18373–18390, Aug. 2020, doi: 10.1016/J.CERAMINT.2020.04.168.
dc.relationD. Choi, “The critical role of substrate bias for the sputter deposition of molybdenum thin films,” Microelectron Eng, vol. 216, p. 111084, Aug. 2019, doi: 10.1016/J.MEE.2019.111084.
dc.relationM. Jaroš, J. Musil, R. Čerstvý, and S. Haviar, “Effect of energy on structure, microstructure and mechanical properties of hard Ti(Al,V)Nx films prepared by magnetron sputtering,” Surf Coat Technol, vol. 332, pp. 190–197, Dec. 2017, doi: 10.1016/J.SURFCOAT.2017.06.074.
dc.relationH. Larhlimi, A. Ghailane, M. Makha, and J. Alami, “Magnetron sputtered titanium carbide-based coatings: A review of science and technology,” Vacuum, vol. 197, p. 110853, Mar. 2022, doi: 10.1016/J.VACUUM.2021.110853.
dc.relationK. Sarakinos, J. Alami, C. Klever, and M. Wuttig, “Process stabilization and enhancement of deposition rate during reactive high power pulsed magnetron sputtering of zirconium oxide,” Surf Coat Technol, vol. 202, no. 20, pp. 5033–5035, Jul. 2008, doi: 10.1016/j.surfcoat.2008.05.009.
dc.relationD. García, U. Piratoba, and Á. Marino, “RECUBRIMIENTOS DE (Ti,Al)N SOBRE ACERO AISI 4140 POR SPUTTERING REACTIVO,” Dyna (Medellin), vol. 74, no. 152, pp. 181–185, May 2007, Accessed: Jan. 21, 2023. [Online]. Available: https://revistas.unal.edu.co/index.php/dyna/article/view/921
dc.relationW. APERADOR, C. AMAYA, and C. ESPAÑA, “RESISTENCIA A LA CORROSIÓN DE LAS MULTICAPAS DE [TIN/ALTIN]n DEPOSITADAS SOBRE ACERO AL CARBONO AISI 1045,” Dyna (Medellin), vol. 78, no. 165, pp. 183–189, Jan. 2011, Accessed: Jan. 21, 2023. [Online]. Available: https://revistas.unal.edu.co/index.php/dyna/article/view/25659
dc.relationD. A. G. Hernández, P. A. J. Ortiz, J. de la R. Yepes, A. R. Muñoz, J. M. González, and F. S. Osorio, “Resistencia a la corrosión de recubrimientos a base de titanio y circonio producidos por magnetrón Sputtering DC,” Informador Técnico, vol. 74, Dec. 2010, doi: 10.23850/22565035.6.
dc.relationJ. Jairo Olaya Florez, Y. Lizbeth Chipatecua Godoy, and S. Elizabeth Rodil Posada, “Resistencia a la corrosión de recubrimientos de nitruros metálicos depositados sobre acero AISI M2 Corrosion resistance of transition metal nitride films deposited on AISI M2 steel,” 2012.
dc.relationE. N. Borja-Goyeneche and J. J. Olaya-Florez, “A microstructural and corrosion resistance study of (Zr, Si, Ti)N-Ni coatings produced through co-sputtering,” Dyna (Medellin), vol. 85, no. 207, pp. 192–197, Oct. 2018, doi: 10.15446/dyna.v85n207.73304.
dc.relationF. L. G. Marín, G. Gilberto Bejarano, and G. Torres Lindarte, “Influence of silver content on microstructural, bactericidal, and cytotoxic behavior of TiAlVN (Ag) composite coatings deposited by magnetron sputtering,” Mater Chem Phys, vol. 291, p. 126776, Nov. 2022, doi: 10.1016/J.MATCHEMPHYS.2022.126776.
dc.relationC. Liu, A. Leyland, Q. Bi, and A. Matthews, “Corrosion resistance of multi-layered plasma-assisted physical vapour deposition TiN and CrN coatings,” Surf Coat Technol, vol. 141, no. 2–3, pp. 164–173, Jun. 2001, doi: 10.1016/S0257-8972(01)01267-1.
dc.relationP. M. Perillo, “Corrosion Behavior of Coatings of Titanium Nitride and Titanium-Titanium Nitride on Steel Substrates,” Corrosion, vol. 62, no. 2, pp. 182–185, Feb. 2006, doi: 10.5006/1.3278263.
dc.relationJ. C. Caicedo, G. Zambrano, W. Aperador, L. Escobar-Alarcon, and E. Camps, “Mechanical and electrochemical characterization of vanadium nitride (VN) thin films,” Appl Surf Sci, vol. 258, no. 1, pp. 312–320, Oct. 2011, doi: 10.1016/j.apsusc.2011.08.057.
dc.relationC. Escobar, J. Caicedo, W. Aperador, A. Delgado, and P. Prieto, “Improve on Corrosion Resistant Surface for AISI 4140 Steel Coated with VN and HfN Single Layer Films,” 2013.
dc.relationM. E. Uslu et al., “Investigation of (Ti,V)N and TiN/VN coatings on AZ91D Mg alloys,” Surf Coat Technol, vol. 284, pp. 252–257, Dec. 2015, doi: 10.1016/J.SURFCOAT.2015.08.066.
dc.relationK. V. Chauhan and S. K. Rawal, “A Review Paper on Tribological and Mechanical Properties of Ternary Nitride based Coatings,” Procedia Technology, vol. 14, pp. 430–437, Jan. 2014, doi: 10.1016/J.PROTCY.2014.08.055.
dc.relationA. Z. Ait-Djafer, N. Saoula, H. Aknouche, B. Guedouar, and N. Madaoui, “Deposition and characterization of titanium aluminum nitride coatings prepared by RF magnetron sputtering,” Appl Surf Sci, vol. 350, pp. 6–9, Sep. 2015, doi: 10.1016/J.APSUSC.2015.02.053.
dc.relationM. Pfeiler, K. Kutschej, M. Penoy, C. Michotte, C. Mitterer, and M. Kathrein, “The effect of increasing V content on structure, mechanical and tribological properties of arc evaporated Ti-Al-V-N coatings,” Int J Refract Metals Hard Mater, vol. 27, no. 2, pp. 502–506, Mar. 2009, doi: 10.1016/j.ijrmhm.2008.06.008.
dc.relationA. M. Abd El-Rahman, “Synthesis and annealing effects on the properties of nanostructured Ti-Al-V-N coatings deposited by plasma enhanced magnetron sputtering,” Mater Chem Phys, vol. 149, pp. 179–187, Jan. 2015, doi: 10.1016/j.matchemphys.2014.10.004.
dc.relationM. Jaroš, J. Musil, and S. Haviar, “Interrelationships among macrostress, microstructure and mechanical behavior of sputtered hard Ti(Al,V)N films,” Mater Lett, vol. 235, pp. 92–96, Jan. 2019, doi: 10.1016/j.matlet.2018.09.173.
dc.relationM. Jaroš, J. Musil, R. Čerstvý, and S. Haviar, “Effect of energy on macrostress in Ti(Al,V)N films prepared by magnetron sputtering,” Vacuum, vol. 158, pp. 52–59, Dec. 2018, doi: 10.1016/j.vacuum.2018.09.038.
dc.relationF. Giraldo, A. M. Echavarría, and G. Bejarano G, “Corrosion performance of TiAlVN-Ag nanocomposite coating deposited by reactive direct current magnetron sputtering,” Thin Solid Films, vol. 761, p. 139518, Nov. 2022, doi: 10.1016/J.TSF.2022.139518.
dc.relationS. Thanka Rajan, B. Subramanian, and A. Arockiarajan, “A comprehensive review on biocompatible thin films for biomedical application,” Ceram Int, vol. 48, no. 4, pp. 4377–4400, Feb. 2022, doi: 10.1016/j.ceramint.2021.10.243.
dc.relationP. J. Kelly et al., “Comparison of the tribological and antimicrobial properties of CrN/Ag, ZrN/Ag, TiN/Ag, and TiN/Cu nanocomposite coatings,” Surf Coat Technol, vol. 205, no. 5, pp. 1606–1610, Nov. 2010, doi: 10.1016/J.SURFCOAT.2010.07.029.
dc.relationH. Wu et al., “Wear and corrosion resistance of anti-bacterial Ti-Cu-N coatings on titanium implants,” Appl Surf Sci, vol. 317, pp. 614–621, Oct. 2014, doi: 10.1016/J.APSUSC.2014.08.163.
dc.relationJ. T. Gudmundsson, N. Brenning, D. Lundin, and U. Helmersson, “High power impulse magnetron sputtering discharge,” Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, vol. 30, no. 3, p. 030801, May 2012, doi: 10.1116/1.3691832.
dc.relationM. R. Alhafian et al., “Comparison on the structural, mechanical and tribological properties of TiAlN coatings deposited by HiPIMS and Cathodic Arc Evaporation,” Surf Coat Technol, vol. 423, Oct. 2021, doi: 10.1016/j.surfcoat.2021.127529.
dc.relationL. Zauner et al., “Time-averaged and time-resolved ion fluxes related to reactive HiPIMS deposition of Ti-Al-N films,” Surf Coat Technol, vol. 424, Oct. 2021, doi: 10.1016/j.surfcoat.2021.127638.
dc.relationL. Zauner et al., “Reactive HiPIMS deposition of Ti-Al-N: Influence of the deposition parameters on the cubic to hexagonal phase transition,” Surf Coat Technol, vol. 382, Jan. 2020, doi: 10.1016/j.surfcoat.2019.125007.
dc.relationT. Shimizu et al., “HIPIMS deposition of TiAlN films on inner wall of micro-dies and its applicability in micro-sheet metal forming,” Surf Coat Technol, vol. 250, pp. 44–51, Jul. 2014, doi: 10.1016/j.surfcoat.2014.02.008.
dc.relationH. Elmkhah, T. F. Zhang, A. Abdollah-zadeh, K. H. Kim, and F. Mahboubi, “Surface characteristics for the Ti[Formula presented]Al[Formula presented]N coatings deposited by high power impulse magnetron sputtering technique at the different bias voltages,” J Alloys Compd, vol. 688, pp. 820–827, 2016, doi: 10.1016/j.jallcom.2016.07.013.
dc.relationL. Liu et al., “Comparative study of TiAlN coatings deposited by different high-ionization physical vapor deposition techniques,” Ceram Int, vol. 46, no. 8, pp. 10814–10819, Jun. 2020, doi: 10.1016/j.ceramint.2020.01.092.
dc.relationL. Julieta-Cardenas Flechas, C. Patricia Mejía-Villagrán, M. Rincon-Joya, and J. Jairo Olaya-Florez, “Synthesis of nanostructured (Ti-Zr-Si)N coatings deposited on Ti6Al4V alloy Síntesis de recubrimientos nanoestructurados de (Ti-Zr-Si)N depositados sobre aleación de Ti6Al4V”, doi: 10.18257/raccefyn.1198.
dc.relationK. M. Krishnan and K. M. Krishnan, “Principles of Materials Characterization and Metrology,” Principles of Materials Characterization and Metrology, pp. 1–848, Jan. 2021, doi: 10.1093/oso/9780198830252.001.0001.
dc.relationC. Suryanarayana and M. G. Norton, “X-Ray Diffraction,” 1998, doi: 10.1007/978-1-4899-0148-4.
dc.relationE. Ortiz Ortega, H. Hosseinian, I. B. Aguilar Meza, M. J. Rosales López, A. Rodríguez Vera, and S. Hosseini, “Material Characterization Techniques and Applications,” vol. 19, 2022, doi: 10.1007/978-981-16-9569-8.
dc.relationF. Alberto and H. Cuestas, “Metodología para caracterización de rugosidad superficial 3D,” Jul. 2018, Accessed: Jan. 28, 2023. [Online]. Available: https://repositorio.unal.edu.co/handle/unal/64132
dc.relationE. Espejo Mora and H. Hernández Albañil, “Análisis de fallas de estructuras y elementos mecánicos”.
dc.relation“Introducción al fenómeno de corrosión: tipos, factores que influyen y control para la protección de materiales (Nota técnica) Introduction to Corrosion Phenomena: Types, Influencing Factors and Control for Material’s Protection (Technical note)”.
dc.relationX. Bai et al., “Hydrothermal oxidation improves corrosion and wear properties of multi-arc ion plated titanium nitride coating for biological application,” Vacuum, vol. 198, p. 110871, Apr. 2022, doi: 10.1016/J.VACUUM.2022.110871.
dc.relationI. Upch, “Diseño y análisis de experimentos Douglas C. Montgomery.” Accessed: Jan. 21, 2023. [Online]. Available: https://www.academia.edu/9101936/Dise%C3%B1o_y_an%C3%A1lisis_de_experimentos_Douglas_C_Montgomery
dc.relationK. Kutschej, P. H. Mayrhofer, M. Kathrein, P. Polcik, and C. Mitterer, “A new low-friction concept for Ti1-xAlxN based coatings in high-temperature applications,” Surf Coat Technol, vol. 188–189, no. 1-3 SPEC.ISS., pp. 358–363, Nov. 2004, doi: 10.1016/j.surfcoat.2004.08.022.
dc.relationQ. Kong et al., “Influence of substrate bias voltage on the microstructure and residual stress of CrN films deposited by medium frequency magnetron sputtering,” Mater Sci Eng B Solid State Mater Adv Technol, vol. 176, no. 11, pp. 850–854, Jun. 2011, doi: 10.1016/j.mseb.2011.04.015.
dc.relationA. AL-Rjoub, T. bin Yaqub, A. Cavaleiro, and F. Fernandes, “The influence of V addition on the structure, mechanical properties, and oxidation behaviour of TiAlSiN coatings deposited by DC magnetron sputtering,” Journal of Materials Research and Technology, vol. 20, pp. 2444–2453, Sep. 2022, doi: 10.1016/J.JMRT.2022.08.009.
dc.relationE. C. Talibouya Ba, M. R. Dumont, P. S. Martins, R. M. Drumond, M. P. M. da Cruz, and V. F. Vieira, “Investigation of the effects of skewness Rsk and kurtosis Rku on tribological behavior in a pin-on-disc test of surfaces machined by conventional milling and turning processes,” Materials Research, vol. 24, no. 2, p. 20200435, Mar. 2021, doi: 10.1590/1980-5373-MR-2020-0435.
dc.relationH. Wang, R. Zhang, Z. Yuan, X. Shu, E. Liu, and Z. Han, “A comparative study of the corrosion performance of titanium (Ti), titanium nitride (TiN), titanium dioxide (TiO2) and nitrogen-doped titanium oxides (N–TiO2), as coatings for biomedical applications,” Ceram Int, vol. 41, no. 9, pp. 11844–11851, Nov. 2015, doi: 10.1016/J.CERAMINT.2015.05.153.
dc.relationZ. He, S. Zhang, and D. Sun, “Effect of bias on structure mechanical properties and corrosion resistance of TiNx films prepared by ion source assisted magnetron sputtering,” Thin Solid Films, vol. 676, pp. 60–67, Apr. 2019, doi: 10.1016/J.TSF.2019.02.037.
dc.relationM. Stern, “Electrochemical Polarization: II . Ferrous‐Ferric Electrode Kinetics on Stainless Steel,” J Electrochem Soc, vol. 104, no. 9, p. 559, Sep. 1957, doi: 10.1149/1.2428653.
dc.relationS. H. Ahn, J. H. Lee, H. G. Kim, and J. G. Kim, “A study on the quantitative determination of through-coating porosity in PVD-grown coatings,” Appl Surf Sci, vol. 233, no. 1–4, pp. 105–114, Jun. 2004, doi: 10.1016/J.APSUSC.2004.03.213.
dc.relationC. Liu, Q. Bi, A. Leyland, and A. Matthews, “An electrochemical impedance spectroscopy study of the corrosion behaviour of PVD coated steels in 0.5 N NaCl aqueous solution: Part I. Establishment of equivalent circuits for EIS data modelling,” Corros Sci, vol. 45, no. 6, pp. 1243–1256, 2003, doi: https://doi.org/10.1016/S0010-938X(02)00213-5.
dc.relationC. Liu, Q. Bi, A. Leyland, and A. Matthews, “An electrochemical impedance spectroscopy study of the corrosion behaviour of PVD coated steels in 0.5 N NaCl aqueous solution: Part II.: EIS interpretation of corrosion behaviour,” Corros Sci, vol. 45, no. 6, pp. 1257–1273, 2003, doi: https://doi.org/10.1016/S0010-938X(02)00214-7.
dc.relationS. Rossi, L. Fedrizzi, T. Bacci, and G. Pradelli, “Corrosion behaviour of glow discharge nitrided titanium alloys,” Corros Sci, vol. 45, no. 3, pp. 511–529, Mar. 2003, doi: 10.1016/S0010-938X(02)00139-7.
dc.relationD. Yang, C. Liu, X. Liu, M. Qi, and G. Lin, “EIS diagnosis on the corrosion behavior of TiN coated NiTi surgical alloy,” Current Applied Physics, vol. 5, no. 5, pp. 417–421, Jul. 2005, doi: 10.1016/J.CAP.2004.11.002.
dc.relationJ. Mu, H. Wang, B. Qin, Y. Zhang, L. Chen, and C. Zeng, “Improved wear and corrosion resistance of biological compatible TiZrNb films on biomedical Ti6Al4V substrates by optimizing sputtering power,” Surf Coat Technol, vol. 428, p. 127866, Dec. 2021, doi: 10.1016/J.SURFCOAT.2021.127866.
dc.relationI. Çaha et al., “Corrosion and tribocorrosion behaviour of titanium nitride thin films grown on titanium under different deposition times,” Surf Coat Technol, vol. 374, pp. 878–888, Sep. 2019, doi: 10.1016/J.SURFCOAT.2019.06.073.
dc.relationA. U. Chaudhry, B. Mansoor, T. Mungole, G. Ayoub, and D. P. Field, “Corrosion mechanism in PVD deposited nano-scale titanium nitride thin film with intercalated titanium for protecting the surface of silicon,” Electrochim Acta, vol. 264, pp. 69–82, Feb. 2018, doi: 10.1016/J.ELECTACTA.2018.01.042.
dc.relationX. Zhao et al., “Combined effect of TiN coating and surface texture on corrosion-wear behavior of selective laser melted CP-titanium in simulated body fluid,” J Alloys Compd, vol. 816, p. 152667, Mar. 2020, doi: 10.1016/J.JALLCOM.2019.152667.
dc.relationC. L. España Peña, “Resistencia a la corrosión y al desgaste de películas delgadas de aceros inoxidables con y sin plata para aplicaciones biomédicas,” Universidad Nacional de Colombia, 2021.
dc.relationE. S. M. Sherif, H. S. Abdo, and N. H. Alharthi, “Beneficial Effects of Vanadium Additions on the Corrosion of Ti6AlxV Alloys in Chloride Solutions,” Metals 2020, Vol. 10, Page 264, vol. 10, no. 2, p. 264, Feb. 2020, doi: 10.3390/MET10020264.
dc.relationE. S. M. Sherif, S. A. Ragab, and H. S. Abdo, “Role of Vanadium Additions on the Corrosion Mitigation of Ti-6Al-xV Alloy in Simulated Body Fluid,” Metals 2020, Vol. 10, Page 903, vol. 10, no. 7, p. 903, Jul. 2020, doi: 10.3390/MET10070903.
dc.relationA. v. Amezhnov et al., “Effect of Chemical Composition and Microstructure Parameters on Carbon and Low-Alloy Steel Corrosion Resistance Under Oil Industry Pipeline Operation Conditions,” Metallurgist, vol. 62, no. 9–10, pp. 1030–1038, Jan. 2019, doi: 10.1007/S11015-019-00750-W/METRICS.
dc.relationB. Hou, Y. Li, Y. Li, and J. Zhang, “Effect of alloy elements on the anti-corrosion properties of low alloy steel,” Bulletin of Materials Science, vol. 23, no. 3, pp. 189–192, 2000, doi: 10.1007/BF02719908/METRICS.
dc.relationW. Hu, H. Zhu, J. Hu, B. Li, and C. Qiu, “Influence of Vanadium Microalloying on Microstructure and Property of Laser-Cladded Martensitic Stainless Steel Coating,” Materials, vol. 13, no. 4, Feb. 2020, doi: 10.3390/MA13040826.
dc.relationI. Cvijović-Alagić, Z. Cvijović, S. Mitrović, V. Panić, and M. Rakin, “Wear and corrosion behaviour of Ti–13Nb–13Zr and Ti–6Al–4V alloys in simulated physiological solution,” Corros Sci, vol. 53, no. 2, pp. 796–808, Feb. 2011, doi: 10.1016/J.CORSCI.2010.11.014.
dc.relationA. K. Shukla, R. Balasubramaniam, and S. Bhargava, “Properties of passive film formed on CP titanium, Ti–6Al–4V and Ti–13.4Al–29Nb alloys in simulated human body conditions,” Intermetallics (Barking), vol. 13, no. 6, pp. 631–637, Jun. 2005, doi: 10.1016/J.INTERMET.2004.10.001.
dc.relationI. Cvijović-Alagić, Z. Cvijović, J. Bajat, and M. Rakin, “Electrochemical behaviour of Ti-6Al-4V alloy with different microstructures in a simulated bio-environment,” Materials and Corrosion, vol. 67, no. 10, pp. 1075–1087, Oct. 2016, doi: 10.1002/MACO.201508796.
dc.relationM. Metikos̆-Huković, A. Kwokal, and J. Piljac, “The influence of niobium and vanadium on passivity of titanium-based implants in physiological solution,” Biomaterials, vol. 24, no. 21, pp. 3765–3775, 2003, doi: https://doi.org/10.1016/S0142-9612(03)00252-7.
dc.relationM. M. Amado, J. E. Alfonso, and J. J. O. Florez, “Effect of Al and Ag dopants on the corrosion resistance of the AISI 316L-YSZ system,” Ceram Int, vol. 45, no. 1, pp. 566–572, Jan. 2019, doi: 10.1016/J.CERAMINT.2018.09.209.
dc.relationW. Chen, T. Hu, C. Wang, H. Xiao, and X. Meng, “The effect of microstructure on corrosion behavior of a novel AlCrTiSiN ceramic coating,” Ceram Int, vol. 46, no. 8, pp. 12584–12592, Jun. 2020, doi: 10.1016/J.CERAMINT.2020.02.022.
dc.rightsAtribución-NoComercial 4.0 Internacional
dc.rightshttp://creativecommons.org/licenses/by-nc/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.titleResistencia a la corrosión de recubrimientos de TiAIVCuN depositados por la técnica de co-sputtering
dc.typeTrabajo de grado - Maestría


Este ítem pertenece a la siguiente institución