dc.contributorDorkis, Ludovic
dc.contributorMárquez Godoy, Marco Antonio
dc.contributorGrupo de Mineralogía Aplicada y Bioprocesos (Gmab)
dc.contributorGrupo de Investigación en Catálisis y Nanomateriales
dc.contributorPaola Andrea, Villegas-Bolaños [0000-0001-8697-8736]
dc.contributorDorkis, Ludovic [0000-0003-2113-3542]
dc.contributorMárquez Godoy, Marco Antonio [0000-0002-7462-2430]
dc.contributorVillegas Bolaños Paola Andrea
dc.contributorPAOLA ANDREA VILLEGAS BOLAÑOS
dc.creatorVillegas Bolaños, Paola Andrea
dc.date.accessioned2023-04-26T14:09:32Z
dc.date.accessioned2023-06-06T22:44:55Z
dc.date.available2023-04-26T14:09:32Z
dc.date.available2023-06-06T22:44:55Z
dc.date.created2023-04-26T14:09:32Z
dc.date.issued2020-04-20
dc.identifierhttps://repositorio.unal.edu.co/handle/unal/83790
dc.identifierUniversidad Nacional de Colombia
dc.identifierRepositorio Institucional Universidad Nacional de Colombia
dc.identifierhttps://repositorio.unal.edu.co/
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/6650867
dc.description.abstractEl potencial catalítico de la dunita de Medellín calcinada a 1200°C y reducida a 900°C fue evaluado mediante dos técnicas catalíticas: el reformado de glicerol con vapor convencional y mediante el acoplamiento a plasma no térmico (NTP). En el método convencional se encontró que la presencia de la dunita de Medellín calcinada incrementa la conversión de glicerol de 58%, sin catalizador, a 97% a 600°C, y facilita la generación de gas de síntesis con una relación de H2/CO de 1.1 y 1.5 con temperaturas de reacción de 700° y 800°C respectivamente, con conversión de glicerol del 100% y sin depósitos de coque, favoreciendo la producción de H2 y CO2 con bajos contenidos de CH4. La temperatura de reacción determinó la formación de productos en fase líquida a 600°C, con tendencia a la formación de productos de deshidrogenación del glicerol, especialmente por el hidroxilo terminal. En cuanto al reformado de glicerol con vapor acoplado a plasma no térmico, se encontró que se formó una atmósfera oxidativa en el proceso de descomposición del glicerol y que este proceso podría llevarse a cabo vía radicales OH. La deshidrogenación inducida por el mineral calcinado acoplado a NTP se desarrolló principalmente sobre el hidroxilo secundario. Bajo condiciones de reacción de 200°C, 0.8 W de potencia, 3 kHz de frecuencia y un volumen activo de 0.55 cm3, se obtuvo dihidroxiacetona, ácido succínico y ácido fórmico con selectividades de 14%, 14% y 8.2% respectivamente, con una conversión de glicerol de 52%, mientras que las selectividades obtenidas sin catalizador fueron menores al 6%. Finalmente, este estudio permitió establecer que es posible generar un geocatalizador a partir de la dunita de Medellín bajo las condiciones empleadas en este trabajo, para el reformado de glicerol con vapor por catálisis convencional o acoplada a plasma no térmico, siendo estas alternativas viables e interesantes para la valorización del glicerol hacia productos en fase gaseosa o líquida. Sin embargo, es necesario establecer condiciones óptimas para la obtención de gas de síntesis y/o de los productos condensados mencionados. Además, es importante plantear estudios centrados en dilucidar los mecanismos por los cuales los compuestos de Fe activos en el mineral calcinado (hematita, olivino y magnetita) desempeñan su rol en la descomposición del glicerol, con el objetivo de mejorar el geocatalizador y hacerlo más selectivo, aprovechando la capacidad del material para mitigar los depósitos de coque, característica observada mediante catálisis convencional. (Texto tomado de la fuente)
dc.description.abstractThe catalytic potential of the calcined dunite from Medellin was evaluated by two catalytic techniques, one of them, the conventional decomposition of glycerol by steam reforming, and the other, by non-thermal plasma (NTP) coupling. In conventional catalysis, it was found that the presence of calcined dunite from Medellin increases the conversion of glycerol from 58%, without catalyst, to 97% at 600°C, and facilitates the generation of synthesis gas with an H2/CO ratio of 1.1 and 1.5 (reaction temperatures of 700°C and 800°C respectively), with 100% glycerol conversion and no coke deposits, favoring the production of H2 and CO2 with low CH4 contents. The reaction temperature determined the formation of liquid phase products at 600°C, with a tendency to the formation of glycerol dehydrogenation products, especially by the terminal hydroxyl. As for the reforming of glycerol with steam coupled to non-thermal plasma, it was found that an oxidative atmosphere was formed in the glycerol decomposition process, and that this process could be carried out via OH radicals. The dehydrogenation, induced by the calcined mineral coupled to NTP, was developed mainly on the secondary hydroxyl. Under reaction conditions of 200°C, 0.8 W of power, 3 kHz frequency and an active volume of 0.55 cm3, dihydroxyacetone, succinic acid and formic acid with selectivities of 14%, 14% and 8.2% respectively were obtained with a conversion of 52% glycerol, while the selectivities obtained without a catalyst were less than 6%. Finally, this study allowed us to establish that it is possible to generate a geocatalyst from the dunite from Medellin under the conditions used in this work, for the reforming of glycerol with steam by conventional catalysis or coupled to non-thermal plasma, being these alternatives viable and interesting for the valorization of glycerol towards products in gas or liquid phase. However, it is necessary to establish optimal conditions for obtaining synthesis gas and/or condensed products. It is also important to propose studies focused on elucidating the mechanisms by which the active Fe compounds in the calcined mineral (hematite, magnesioferrite, and magnetite) play their role in the decomposition of glycerol, in order to improve the geocatalyst performance and selectivity, taking advantage of the capacity of the material to mitigate coke deposits, characteristic observed by conventional catalysis.
dc.languagespa
dc.publisherUniversidad Nacional de Colombia
dc.publisherMedellín - Minas - Doctorado en Ingeniería - Ciencia y Tecnología de Materiales
dc.publisherDepartamento de Materiales y Minerales
dc.publisherFacultad de Minas
dc.publisherMedellín, Colombia
dc.publisherUniversidad Nacional de Colombia - Sede Medellín
dc.relationA. Martínez y T. Aguilar, “Estudios sobre los impactos socio-económicos del sector minero en Colombia : encadenamientos sectoriales”, Cuad. Fedesarrollo, núm. 47, pp. 1–69, 2013.
dc.relationUPME y MinMinas, “Plan de Ordenamiento Minero (PNOM)”, Bogotá, Colombia, 2014.
dc.relationE. Pereira, F. Ortiz, y H. Prichard, “Contribución al conocimiento de las anfibolitas y dunitas de Medellín (complejo ofiolítico de aburrá)”, Dyna, vol. 73, núm. 149, pp. 17–30, 2006.
dc.relationD. Kramer, “Current Mining of Olivine and Serpentine”, Reston, VA., U.S.A, 2001.
dc.relationL. Devi, K. J. Ptasinski, F. J. J. G. Janssen, S. V. B. van Paasen, P. C. A. Bergman, y J. H. A. Kiel, “Catalytic decomposition of biomass tars: use of dolomite and untreated olivine”, Renew. Energy, vol. 30, núm. 4, pp. 565–587, abr. 2005, doi: 10.1016/j.renene.2004.07.014
dc.relationL. Devi, M. Craje, P. Thüne, K. J. Ptasinski, y F. J. J. G. Janssen, “Olivine as tar removal catalyst for biomass gasifiers: Catalyst characterization”, Appl. Catal. A Gen., vol. 294, núm. 1, pp. 68–79, oct. 2005, doi: 10.1016/j.apcata.2005.07.044.
dc.relationS. Kureti, K. Hizbullah, y W. Weisweiler, “Simultaneous Catalytic Removal of Nitrogen Oxides and Soot from Diesel Exhaust Gas over Potassium Modified Iron Oxide”, Chem. Eng. Technol., vol. 26, núm. 9, pp. 1003–1006, sep. 2003, doi: 10.1002/ceat.200301759.
dc.relationH. O. A. Fredriksson, R. J. Lancee, P. C. Thüne, H. J. Veringa, y J. W. (Hans) Niemantsverdriet, “Olivine as tar removal catalyst in biomass gasification: Catalyst dynamics under model conditions”, Appl. Catal. B Environ., vol. 130–131, pp. 168–177, feb. 2013, doi: 10.1016/j.apcatb.2012.10.017.
dc.relationS. Adhikari, S. Fernando, y A. Haryanto, “Production of hydrogen by steam reforming of glycerin over alumina-supported metal catalysts”, Catal. Today, vol. 129, núm. 3–4, pp. 355–364, 2007, doi: 10.1016/j.cattod.2006.09.038
dc.relationS. Adhikari, S. D. Fernando, y A. Haryanto, “Hydrogen production from glycerol: An update”, Energy Convers. Manag., vol. 50, núm. 10, pp. 2600–2604, 2009, doi: 10.1016/j.enconman.2009.06.011
dc.relationA. Behr, J. Eilting, K. Irawadi, J. Leschinski, y F. Lindner, “Improved utilisation of renewable resources: New important derivatives of glycerol”, Green Chem., vol. 10, núm. 1, pp. 13–30, 2008, doi: 10.1039/B710561D.
dc.relationC.-H. (Clayton) Zhou, J. N. Beltramini, Y.-X. Fan, y G. Q. (Max) Lu, “Chemoselective catalytic conversion of glycerol as a biorenewable source to valuable commodity chemicals”, Chem. Soc. Rev., vol. 37, núm. 3, pp. 527–549, 2008, doi: 10.1039/B707343G
dc.relationP. D. Vaidya y A. E. Rodrigues, “Glycerol Reforming for Hydrogen Production: A Review”, Chem. Eng. Technol., vol. 32, núm. 10, pp. 1463–1469, oct. 2009, doi: 10.1002/ceat.200900120.
dc.relationC. A. Schwengber et al., “Overview of glycerol reforming for hydrogen production”, Renew. Sustain. Energy Rev., vol. 58, núm. July 2014, pp. 259–266, may 2016, doi: 10.1016/j.rser.2015.12.279
dc.relationY. C. Lin, “Catalytic valorization of glycerol to hydrogen and syngas”, Int. J. Hydrogen Energy, vol. 38, núm. 6, pp. 2678–2700, 2013, doi: 10.1016/j.ijhydene.2012.12.079
dc.relationP. Lauriol-Garbay, J. M. M. Millet, S. Loridant, V. Bellire-Baca, y P. Rey, “New efficient and long-life catalyst for gas-phase glycerol dehydration to acrolein”, J. Catal., vol. 280, núm. 1, pp. 68–76, 2011, doi: 10.1016/j.jcat.2011.03.005
dc.relationO. Ali Zadeh Sahraei, F. Larachi, N. Abatzoglou, y M. C. Iliuta, “Hydrogen production by glycerol steam reforming catalyzed by Ni-promoted Fe/Mg-bearing metallurgical wastes”, Appl. Catal. B Environ., vol. 219, núm. 1, pp. 183–193, dic. 2017, doi: 10.1016/j.apcatb.2017.07.039.
dc.relationA. Bogaerts, E. Neyts, R. Gijbels, y J. Van Der Mullen, “Gas discharge plasmas and their applications”, Spectrochim. Acta Part B, vol. 57, pp. 609–658, 2002.
dc.relationF. Chen, X. Huang, D. G. Cheng, y X. Zhan, “Hydrogen production from alcohols and ethers via cold plasma: A review”, Int. J. Hydrogen Energy, vol. 39, núm. 17, pp. 9036–9046, 2014, doi: 10.1016/j.ijhydene.2014.03.194.
dc.relationX. Zhu, T. Hoang, L. L. Lobban, y R. G. Mallinson, “Plasma reforming of glycerol for synthesis gas production”, Chem Commun, núm. 20, pp. 2908–2910, 2009, doi: 10.1039/b823410h.
dc.relationD. Świerczyński, C. Courson, L. Bedel, A. Kiennemann, y S. Vilminot, “Oxidation Reduction Behavior of Iron-Bearing Olivines (Fe x Mg 1- x ) 2 SiO 4 Used as Catalysts for Biomass Gasification”, Chem. Mater., vol. 18, núm. 4, pp. 897–905, feb. 2006, doi: 10.1021/cm051433+
dc.relationR. Michel et al., “Steam reforming of α-methylnaphthalene as a model tar compound over olivine and olivine supported nickel”, Fuel, vol. 109, pp. 653–660, jul. 2013, doi: 10.1016/j.fuel.2013.03.017.
dc.relationJ. Corella, J. M. Toledo, y R. Padilla, “Olivine or Dolomite as In-Bed Additive in Biomass Gasification with Air in a Fluidized Bed: Which Is Better?”, Energy & Fuels, vol. 18, núm. 3, pp. 713–720, abr. 2004, doi: 10.1021/ef0340918.
dc.relationR. Michel, M. R. Ammar, J. Poirier, y P. Simon, “Phase transformation characterization of olivine subjected to high temperature in air”, Ceram. Int., vol. 39, núm. 5, pp. 5287–5294, jul. 2013, doi: 10.1016/j.ceramint.2012.12.031.
dc.relationM. Giraldo y D. Sánchez, “Cartografía geológica del contacto del cuerpo sur de la dunita de Medellín con sus rocas asociadas Escala 1:10.000”, Tesis Pregrado, Universidad Nacional de Colombia, Facultad de Minas, Medellín, Colombia, 2004
dc.relationS. Rapagnà, N. Jand, A. Kiennemann, y P. U. Foscolo, “Steam-gasification of biomass in a fluidised-bed of olivine particles”, Biomass and Bioenergy, vol. 19, núm. 3, pp. 187–197, sep. 2000, doi: 10.1016/S0961-9534(00)00031-3.
dc.relationZ. Abu El-Rub, E. A. Bramer, y G. Brem, “Tar removal in a fixed bed with application to biomass gasification”, 2003.
dc.relationL. Devi, K. Ptasinski, y F. J. J. G. Janssen, “Pretreated olivine as tar removal catalyst for biomass gasifiers: investigation using naphthalene as model biomass tar”, Fuel Process. Technol., vol. 86, núm. 6, pp. 707–730, mar. 2005, doi: 10.1016/j.fuproc.2004.07.001
dc.relationR. Rauch, K. Bosch, H. Hofbauer, D. Świerczyński, y C. Courson, “Comparison of different olivines for biomass steam gasification”, Sci. Therm. Chem. Biomass Convers., núm. February 2016, pp. 799–809, 2006.
dc.relationJ. N. Kuhn, Z. Zhao, L. G. Felix, R. B. Slimane, C. W. Choi, y U. S. Ozkan, “Olivine catalysts for methane- and tar-steam reforming”, Appl. Catal. B Environ., vol. 81, núm. 1–2, pp. 14–26, may 2008, doi: 10.1016/j.apcatb.2007.11.040.
dc.relationM. Virginie, C. Courson, y A. Kiennemann, “Toluene steam reforming as tar model molecule produced during biomass gasification with an iron/olivine catalyst”, Comptes Rendus Chim., vol. 13, núm. 10, pp. 1319–1325, oct. 2010, doi: 10.1016/j.crci.2010.03.022.
dc.relationM. Virginie et al., “Effect of Fe–olivine on the tar content during biomass gasification in a dual fluidized bed”, Appl. Catal. B Environ., vol. 121–122, pp. 214–222, jun. 2012, doi: 10.1016/j.apcatb.2012.04.005
dc.relationC. Christodoulou, D. Grimekis, K. D. Panopoulos, E. P. Pachatouridou, E. F. Iliopoulou, y E. Kakaras, “Comparing calcined and un-treated olivine as bed materials for tar reduction in fluidized bed gasification”, Fuel Process. Technol., vol. 124, pp. 275–285, ago. 2014, doi: 10.1016/j.fuproc.2014.03.012.
dc.relationR. Zhang, H. Wang, y X. Hou, “Catalytic reforming of toluene as tar model compound: effect of Ce and Ce-Mg promoter using Ni/olivine catalyst.”, Chemosphere, vol. 97, pp. 40–46, feb. 2014, doi: 10.1016/j.chemosphere.2013.10.087.
dc.relationC. Courson, E. Makaga, C. Petit, y A. Kiennemann, “Development of Ni catalysts for gas production from biomass gasification. Reactivity in steam- and dry-reforming”, Catal. Today, vol. 63, núm. 2–4, pp. 427–437, dic. 2000, doi: 10.1016/S0920-5861(00)00488-0.
dc.relationX. Yang, S. Xu, Z. Chen, y J. Liu, “Improved nickel-olivine catalysts with high coking resistance and regeneration ability for the steam reforming of benzene”, React. Kinet. Mech. Catal., vol. 108, núm. 2, pp. 459–472, dic. 2012, doi: 10.1007/s11144-012-0527-0.
dc.relationL. Devi, K. J. Ptasinski, y F. J. J. G. Janssen, “Decomposition of Naphthalene as a Biomass Tar over Pretreated Olivine: Effect of Gas Composition, Kinetic Approach, and Reaction Scheme”, Ind. Eng. Chem. Res., vol. 44, núm. 24, pp. 9096–9104, nov. 2005, doi: 10.1021/ie050801g.
dc.relationX. Yang, S. Xu, H. Xu, X. Liu, y C. Liu, “Nickel supported on modified olivine catalysts for steam reforming of biomass gasification tar”, Catal. Commun., vol. 11, núm. 5, pp. 383–386, ene. 2010, doi: 10.1016/j.catcom.2009.11.006.
dc.relationR. Zhang, Y. Wang, y R. C. Brown, “Steam reforming of tar compounds over Ni/olivine catalysts doped with CeO2”, Energy Convers. Manag., vol. 48, núm. 1, pp. 68–77, ene. 2007, doi: 10.1016/j.enconman.2006.05.001.
dc.relationS. Rapagnà et al., “Fe/olivine catalyst for biomass steam gasification: Preparation, characterization and testing at real process conditions”, Catal. Today, vol. 176, núm. 1, pp. 163–168, nov. 2011, doi: 10.1016/j.cattod.2010.11.098
dc.relationA. Hachimi, L. Vilcocq, C. Courson, y A. Kiennemann, “Study of olivine supported copper sorbents performances in the desulfurization process in link with biomass gasification”, Fuel Process. Technol., vol. 118, pp. 254–263, feb. 2014, doi: 10.1016/j.fuproc.2013.10.001.
dc.relationD. Świerczyński, S. Libs, C. Courson, y A. Kiennemann, “Steam reforming of tar from a biomass gasification process over Ni/olivine catalyst using toluene as a model compound”, Appl. Catal. B Environ., vol. 74, núm. 3–4, pp. 211–222, jul. 2007, doi: 10.1016/j.apcatb.2007.01.017.
dc.relationM. Gupta y N. Kumar, “Scope and opportunities of using glycerol as an energy source”, Renew. Sustain. Energy Rev., vol. 16, núm. 7, pp. 4551–4556, 2012, doi: 10.1016/j.rser.2012.04.001
dc.relationB. M. Pagliaro, M. Rossi, y M. Pagliaro, “Glycerol : Properties and Production”, en The future of glycerol: New Uses of a Versatile Raw Material, 2008, pp. 1–18.
dc.relationOECD/FAO, “Chapter 1: Overview”, en OECD-FAO Agricultural Outlook 2018-2027, Food and Agriculture Organization of the United Nation, Ed. Rome: OECD Publishing, Paris, 2018, p. 107.
dc.relationK. S. Avasthi, R. N. Reddy, y S. Patel, “Challenges in the production of hydrogen from glycerol-a biodiesel byproduct via steam reforming process”, Procedia Eng., vol. 51, pp. 423–429, 2013, doi: 10.1016/j.proeng.2013.01.059.
dc.relationS. Adhikari, S. D. Fernando, S. D. F. To, R. M. Bricka, P. H. Steele, y A. Haryanto, “Conversion of glycerol to hydrogen via a steam reforming process over nickel catalysts”, Energy and Fuels, vol. 22, núm. 2, pp. 1220–1226, 2008, doi: 10.1021/ef700520f.
dc.relationP. O. Sharma, S. Swami, S. Goud, y M. A. Abraham, “Catalyst Development for Stable Hydrogen Generation During Steam Reforming of Renewable and Nonrenewable Resources”, Environ. Prog. Sustain. Energy, vol. 27, núm. 1, pp. 22–29, 2008, doi: 10.1002/ep.
dc.relationF. Pompeo, G. F. Santori, y N. N. Nichio, “Hydrogen production by glycerol steam reforming with Pt/SiO2 and Ni/SiO2 catalysts”, Catal. Today, vol. 172, núm. 1, pp. 183–188, 2011, doi: 10.1016/j.cattod.2011.05.001
dc.relationT. Hirai, N. Ikenaga, T. Miyake, y T. Suzuki, “Production of Hydrogen by Steam Reforming of Glycerin on Ruthenium Catalyst”, Energy & Fuels, vol. 19, núm. 4, pp. 1761–1762, jul. 2005, doi: 10.1021/ef050121q.
dc.relationR. R. Soares, D. A. Simonetti, y J. A. Dumesic, “Glycerol as a source for fuels and chemicals by low-temperature catalytic processing”, Angew. Chemie - Int. Ed., vol. 45, núm. 24, pp. 3982–3985, 2006, doi: 10.1002/anie.200600212
dc.relationC. D. Dave y K. K. Pant, “Renewable hydrogen generation by steam reforming of glycerol over zirconia promoted ceria supported catalyst”, Renew. Energy, vol. 36, núm. 11, pp. 3195–3202, 2011, doi: 10.1016/j.renene.2011.03.013.
dc.relationA. Iriondo et al., “Hydrogen Production from Glycerol Over Nickel Catalysts Supported on Al2O3 Modified by Mg, Zr, Ce or La”, Top. Catal., vol. 49, núm. 1–2, pp. 46–58, 2008, doi: 10.1007/s11244-008-9060-9.
dc.relationY. Cui, V. Galvita, L. Rihko-Struckmann, H. Lorenz, y K. Sundmacher, “Steam reforming of glycerol: The experimental activity of La1-xCexNiO3 catalyst in comparison to the thermodynamic reaction equilibrium”, Appl. Catal. B Environ., vol. 90, núm. 1–2, pp. 29–37, 2009, doi: 10.1016/j.apcatb.2009.02.006.
dc.relationL. He, J. M. S. Parra, E. A. Blekkan, y D. Chen, “Towards efficient hydrogen production from glycerol by sorption enhanced steam reforming”, Energy Environ. Sci., vol. 3, núm. 8, pp. 1046–1056, 2010, doi: 10.1039/b922355j
dc.relationV. Chiodo, S. Freni, A. Galvagno, N. Mondello, y F. Frusteri, “Catalytic features of Rh and Ni supported catalysts in the steam reforming of glycerol to produce hydrogen”, Appl. Catal. A Gen., vol. 381, núm. 1–2, pp. 1–7, 2010, doi: 10.1016/j.apcata.2010.03.039.
dc.relationF. Pompeo, G. Santori, y N. N. Nichio, “Hydrogen and/or syngas from steam reforming of glycerol. Study of platinum catalysts”, Int. J. Hydrogen Energy, vol. 35, núm. 17, pp. 8912–8920, 2010, doi: 10.1016/j.ijhydene.2010.06.011.
dc.relationS. Xia, R. Nie, X. Lu, L. Wang, P. Chen, y Z. Hou, “Hydrogenolysis of glycerol over Cu0.4/Zn5.6-xMgxAl2O8.6catalysts: The role of basicity and hydrogen spillover”, J. Catal., vol. 296, pp. 1–11, 2012, doi: 10.1016/j.jcat.2012.08.007.
dc.relationE. G. Rodrigues, M. F. R. Pereira, J. J. Delgado, X. Chen, y J. J. M. Órfão, “Enhancement of the selectivity to dihydroxyacetone in glycerol oxidation using gold nanoparticles supported on carbon nanotubes”, Catal. Commun., vol. 16, núm. 1, pp. 64–69, 2011, doi: 10.1016/j.catcom.2011.09.009
dc.relationG. De Avila-Montiel, Á. Realpe-Jiménez, J. E. Duran-Ariza, M. Acevedo-Morantes, y H. Y. Bonfante-Álvarez, “Bioconversión de glicerol a dihidroxiacetona usando un proceso fedbatch mediante fermentación con Gluconobacter oxydans”, Ing. Investig. y Tecnol., vol. 17, núm. 3, pp. 331–341, 2016, doi: 10.1016/j.riit.2016.07.004.
dc.relationA. C. Garcia, Y. Y. Birdja, G. Tremiliosi-Filho, y M. T. M. Koper, “Glycerol electro-oxidation on bismuth-modified platinum single crystals”, J. Catal., vol. 346, pp. 117–124, 2017, doi: 10.1016/j.jcat.2016.12.013.
dc.relationD. Hekmat, R. Bauer, y J. Fricke, “Optimization of the microbial synthesis of dihydroxyacetone from glycerol with Gluconobacter oxydans”, Bioprocess Biosyst. Eng., vol. 26, núm. 2, pp. 109–116, 2003, doi: 10.1007/s00449-003-0338-9.
dc.relationP. Mcmorn, G. Roberts, y G. J. Hutchings, “Oxidation of glycerol with hydrogen peroxide using silicalite and aluminophosphate catalysts”, Catal. Letters, vol. 63, núm. 1999, pp. 193–197, 1999, doi: 10.1023/A:1019073122592.
dc.relationS. . Yoon, Y. M. Yon, M. . Seo, Y. K. Kim, H. W. Ra, y J.-G. Lee, “Hydrogen and syngas production from glycerol through microwave plasma gasification”, Int. J. Hydrogen Energy, vol. 38, núm. 34, pp. 14559–14567, 2013, doi: 10.1016/j.ijhydene.2013.09.001
dc.relationD. Swierczynski, C. Courson, y A. Kiennemann, “Study of steam reforming of toluene used as model compound of tar produced by biomass gasification”, Chem. Eng. Process. Process Intensif., vol. 47, núm. 3, pp. 508–513, mar. 2008, doi: 10.1016/j.cep.2007.01.012.
dc.relationS. A. Sadeek, M. S. Refat, y S. M. Teleb, “Spectroscopic and Thermal Studies of [Cr2(NH2)2(H2O)2(SO4)2]·2H2O,[Cr(NCO)3(H2O)]·3H2O and [Fe O(OH)]·0.2H2O Compounds Formed by the Reactions of Urea with Cr2(SO4)3, Cr(CH3COO)3 AND Fe2(SO4)3”, J. Korean Chem. Soc., vol. 48, núm. 4, pp. 358–366, 2004, doi: 10.5012/jkcs.2004.48.4.358.
dc.relationN. O. Gopal, K. V. Narasimhulu, y J. Lakshmana Rao, “Optical absorption, EPR, infrared and Raman spectral studies of clinochlore mineral”, J. Phys. Chem. Solids, vol. 65, núm. 11, pp. 1887–1893, 2004, doi: 10.1016/j.jpcs.2004.07.003.
dc.relationH. Van der Marel , H.W.; Beutelspacher, Atlas of Infrared Spectroscopy of Clay Minerals and their Admixtures. Amsterdam: Elsevier Science Ltd, 1976.
dc.relationN. V. Chukanov, Infrared spectra of mineral species: Extended library, vol. 1. Dordrecht: Springer Netherlands, 2014.
dc.relationC. Jolicoeur y D. Duchesne, “Infrared and thermogravimetric studies of the thermal degradation of chrysotile asbestos fibers: evidence for matrix effects”, Can. J. Chem, vol. 59, núm. 10, pp. 1521–1526, 1981.
dc.relationB. Z. Dlugogorski y R. D. Balucan, “Dehydroxylation of serpentine minerals: Implications for mineral carbonation”, Renew. Sustain. Energy Rev., vol. 31, núm. 2014, pp. 353–367, 2014, doi: 10.1016/j.rser.2013.11.002
dc.relationM. Titulaer, “Porous Structure and Particle Size of Silica and Hydrotalcite Catalyst Precursors”, Ph.D. thesis, University of Utrecht, Utrecht, NL, 1993.
dc.relationE. Doelsch et al., “Speciation and crystal chemistry of Fe(III) chloride hydrolyzed in the presence of SiO4 ligands. 2. Characterization of Si-Fe aggregates by FTIR and 29Si solid-state NMR”, Langmuir, vol. 17, núm. 5, pp. 1399–1405, 2001, doi: 10.1021/la0013188
dc.relationR. Lafay, G. Montes-Hernandez, E. Janots, R. Chiriac, N. Findling, y F. Toche, “Simultaneous precipitation of magnesite and lizardite from hydrothermal alteration of olivine under high-carbonate alkalinity”, Chem. Geol., vol. 368, pp. 63–75, 2014, doi: 10.1016/j.chemgeo.2014.01.008.
dc.relationH. Shirozu, “Cation distribution, sheet thickness, and O-OH space in trioctahedral chlorites- an X ray and infrared study”, Mineral. J., vol. 10, núm. 1, pp. 14–34, 1980, doi: http://doi.org/10.2465/minerj.10.14
dc.relationL. Lerner y D. A. Torchia, “A Multinuclear NMR Study of the Interactions of cations with proteoglycans, heparin, and Ficoll.”, J. Biol. Chem., vol. 261, pp. 12706–12714, 1986.
dc.relationN. O. Gopal, K. V. Narasimhulu, y J. L. Rao, “EPR, optical, infrared and Raman spectral studies of Actinolite mineral”, Spectrochim. Acta - Part A Mol. Biomol. Spectrosc., vol. 60, núm. 11, pp. 2441–2448, 2004, doi: 10.1016/j.saa.2003.12.021.
dc.relationP. Makreski, G. Jovanovski, y A. Gajović, “Minerals from Macedonia: XVII. Vibrational spectra of some common appearing amphiboles”, Vib. Spectrosc., vol. 40, núm. 1, pp. 98–109, 2006, doi: 10.1016/j.vibspec.2005.07.006.
dc.relationA. F. Gualtieri y A. Tartaglia, “Thermal decomposition of asbestos and recycling in traditional ceramics”, J. Eur. Ceram. Soc., vol. 20, núm. 9, pp. 1409–1418, 2000, doi: 10.1016/S0955-2219(99)00290-3.
dc.relationW. Smykatz-Kloss, Differential thermal analysis: Application and results in mineralogy. Springer-Verlag, Berlin, 1974.
dc.relationJ. A. Tyburczy y T. J. Ahrens, “Dehydration kinetics of shocked serpentine”, en Proceedings of the Lunar and Planetary Sciences Conference, 1987, vol. 18th, pp. 435–441, doi: 10.1017/CBO9781107415324.004
dc.relationU. B. Ashimov, Y. A. Bolotov, R. K. Arykbaev, y N. V. Shipkov, “Thermal analysis of serpentinites”, Refractories, vol. 30, núm. 7–8, pp. 491–494, jul. 1989, doi: 10.1007/BF01280685
dc.relationA. G. Freeman, “The dehydroxylation behaviour of amphiboles”, Mineral. Mag. J. Mineral. Soc., vol. 35, núm. 275, pp. 953–957, sep. 1966, doi: 10.1180/minmag.1966.035.275.06.
dc.relationR. Kusiorowski, T. Zaremba, J. Piotrowski, y J. Adamek, “Thermal decomposition of different types of asbestos”, J. Therm. Anal. Calorim., vol. 109, núm. 2, pp. 693–704, 2012, doi: 10.1007/s10973-012-2222-9.
dc.relationU. Schwertmann y R. M. Cornell, Iron oxides in the laboratory: Preparation and characterization, 1a ed. Weinheim, Germany: Wiley-VCH, 1991.
dc.relationR. L. Frost, Z. Ding, y H. D. Ruan, “Thermal analysis of goethite Relevance to Australian indigenous art”, J. Therm. Anal. Calorim., vol. 71, pp. 783–797, 2003, doi: 10.1109/ISTC.2012.6325228
dc.relationD. Walter, G. Buxbaum, y W. Laqua, “The mechanism of the thermal transformation from goethite to hematite”, J. Therm. Anal. Calorim., vol. 63, núm. 3, pp. 733–748, 2001, doi: 10.1023/A:1010187921227
dc.relationJ. Mazo-Zuluaga, C. A. Barrero, A. Jerez, J. Restrepo, y A. L. Morales, “Transformación Magnetita-Hematita Inducida Térmicamente”, Rev. Colomb. Fis., vol. 33, núm. 2, pp. 230–233, 2001
dc.relationA. Steudel, R. Kleeberg, C. B. Koch, F. Friedrich, y K. Emmerich, “Thermal behavior of chlorites of the clinochlore-chamosite solid solution series: Oxidation of structural iron, hydrogen release and dehydroxylation”, Appl. Clay Sci., vol. 132–133, pp. 626–634, 2016, doi: 10.1016/j.clay.2016.08.013.
dc.relationK. J. D. Mackenzie y R. H. Meinhold, “Thermal reactions of chrysotile revisited: A 29Si and 25Mg MAS NMR study”, Am. Mineral., vol. 79, núm. 1–2, pp. 43–50, 1994
dc.relationO. K. Borggaard, “Oxidation and Reduction of Structural Iron in Chlorite at 480°C”, Clays Clay Miner., vol. 30, núm. 5, pp. 353–363, 1982, doi: 10.1346/CCMN.1982.0300506
dc.relationK. Przepiera y A. Przepiera, “Kinetics of thermal transformations of precipitated magnetite and goethite”, J. Therm. Anal. Calorim., vol. 65, núm. 2, pp. 497–503, 2001, doi: 10.1023/A:1012441421955
dc.relationC. Rhodes, G. J. Hutchings, y A. M. Ward, “Water-gas shift reaction: finding the mechanistic boundary”, Catal. Today, vol. 23, núm. 1, pp. 43–58, 1995, doi: 10.1016/0920-5861(94)00135-O
dc.relationE. F. Armstrong y T. P. Hilditch, “Interaction of Carbon Monoxide and Steam as Conditioned”, Proc. Roy. Sot., vol. A97, pp. 265–273, 1920.
dc.relationN. R. Khisina, R. Wirth, M. Andrut, y A. V. Ukhanov, “Extrinsic and intrinsic mode of hydrogen occurence in natural olivines: FTIR and TEM investigation”, Phys. Chem. Miner., vol. 28, núm. 5, pp. 291–301, 2001, doi: 10.1007/s002690100162
dc.relationC. Courson, L. Udron, C. Petit, y A. Kiennemann, “Grafted NiO on natural olivine for dry reforming of methane”, Sci. Technol. Adv. Mater., vol. 3, núm. 3, p. 271, 2002.
dc.relationW. K. Jozwiak, E. Kaczmarek, T. P. Maniecki, W. Ignaczak, y W. Maniukiewicz, “Reduction behavior of iron oxides in hydrogen and carbon monoxide atmospheres”, Appl. Catal. A Gen., vol. 326, núm. 1, pp. 17–27, 2007, doi: 10.1016/j.apcata.2007.03.021
dc.relationJ. Ashok y S. Kawi, “Nickel-iron alloy supported over iron-alumina catalysts for steam reforming of biomass tar model compound”, ACS Catal., vol. 4, núm. 1, pp. 289–301, 2014, doi: 10.1021/cs400621p
dc.relationA. Fridman, A. Chirokov, y A. Gutsol, “Non-thermal atmospheric pressure discharges”, J. Phys. D. Appl. Phys., vol. 38, núm. 2, 2005, doi: 10.1088/0022-3727/38/2/R01
dc.relationU. Kogelschatz, B. Eliasson, y W. Egli, “From ozone generators to flat television screens: history and future potential of dielectric-barrier discharges”, Pure Appl. Chem., vol. 71, núm. 10, pp. 1819–1828, 1999, doi: 10.1351/pac199971101819.
dc.relationV. Goujard, J. M. Tatibouët, y C. Batiot-Dupeyrat, “Use of a non-thermal plasma for the production of synthesis gas from biogas”, Appl. Catal. A Gen., vol. 353, núm. 2, pp. 228–235, 2009, doi: 10.1016/j.apcata.2008.10.050
dc.relationA. M. Vandenbroucke, R. Morent, N. De Geyter, y C. Leys, “Non-thermal plasmas for non-catalytic and catalytic VOC abatement”, J. Hazard. Mater., vol. 195, pp. 30–54, 2011, doi: 10.1016/j.jhazmat.2011.08.060
dc.relationL. Liu, “Roles of Non-thermal Plasma in Gas-phase Glycerol Dehydration Catalyzed by Supported Silicotungstic Acid”, Ph.D dissertation, University of Tennessee, Knoxville, 2011.
dc.relationB. Eliasson y U. Kogelschatz, “Nonequilibrium Volume Plasma Chemical Processing”, IEEE Trans. Plasma Sci., vol. 19, núm. 6, pp. 1063–1077, 1991, doi: 10.1109/27.125031.
dc.relationF. J. Gutiérrez Ortiz, A. Serrera, S. Galera, y P. Ollero, “Experimental study of the supercritical water reforming of glycerol without the addition of a catalyst”, Energy, vol. 56, núm. 2013, pp. 193–206, 2013, doi: 10.1016/j.energy.2013.04.046.
dc.relationO. Khalifeh, A. Mosallanejad, H. Taghvaei, M. R. Rahimpour, y A. Shariati, “Decomposition of methane to hydrogen using nanosecond pulsed plasma reactor with different active volumes, voltages and frequencies”, Appl. Energy, vol. 169, pp. 585–596, 2016, doi: 10.1016/j.apenergy.2016.02.017
dc.relationNarengerile, M. H. Yuan, y T. Watanabe, “Decomposition mechanism of phenol in water plasmas by DC discharge at atmospheric pressure”, Chem. Eng. J., vol. 168, núm. 3, pp. 985–993, 2011, doi: 10.1016/j.cej.2011.01.072.
dc.relationT. Watanabe y Narengerile, “Decomposition of Glycerine by Water Plasmas at Atmospheric Pressure”, Plasma Sci. Technol., vol. 15, núm. 4, pp. 357–361, 2013, doi: 10.1088/1009-0630/15/4/09.
dc.relationB. Wang, Y. Lü, X. Zhang, y S. Hu, “Hydrogen generation from steam reforming of ethanol in dielectric barrier discharge”, J. Nat. Gas Chem., vol. 20, núm. 2, pp. 151–154, 2011, doi: 10.1016/S1003-9953(10)60160-0
dc.relationB. Wang, W. Yan, W. Ge, y X. Duan, “Methane conversion into higher hydrocarbons with dielectric barrier discharge micro-plasma reactor”, J. Energy Chem., vol. 22, núm. 6, pp. 876–882, 2013, doi: 10.1016/S2095-4956(14)60267-9
dc.relationP. Lukes y B. R. Locke, “Plasmachemical oxidation processes in a hybrid gas-liquid electrical discharge reactor”, J. Phys. D. Appl. Phys., vol. 38, núm. 22, pp. 4074–4081, 2005, doi: 10.1088/0022-3727/38/22/010
dc.relationM. A. A. Schoonen, Y. Xu, y D. R. Strongin, “An introduction to geocatalysis”, J. Geochemical Explor., vol. 62, núm. 1–3, pp. 201–215, 1998, doi: http://dx.doi.org/10.1016/S0375-6742(97)00069-1
dc.relationM. Toyofuku, Y. Ohtsu, y H. Fujita, “High ozone generation with a high-dielectric-constant material”, Japanese J. Appl. Physics, Part 1 Regul. Pap. Short Notes Rev. Pap., vol. 43, núm. 7 A, pp. 4368–4372, 2004, doi: 10.1143/JJAP.43.4368.
dc.relationC. Liu, G. Xu, y T. Wang, “Non-thermal plasma approaches in CO2 utilization”, Fuel Process. Technol., vol. 58, núm. 2–3, pp. 119–134, 1999, doi: 10.1016/S0378-3820(98)00091-5
dc.relationS. Lovascio, N. Blin-Simiand, L. Magne, F. Jorand, y S. Pasquiers, “Experimental Study and Kinetic Modeling for Ethanol Treatment by Air Dielectric Barrier Discharges”, Plasma Chem. Plasma Process., vol. 35, núm. 2, pp. 279–301, 2015, doi: 10.1007/s11090-014-9601-x
dc.relationL. Chang-Jun, R. Mallinson, y L. L. Lobban, “Comparative investigations on plasma catalytic methane conversion to higher hydrocarbons over zeolites”, Appl. Catal. A Gen., vol. 178, núm. 1, pp. 17–27, 1999
dc.relationJ. Wang, C. Liu, y B. Eliassion, “Density Functional Theory Study of Synthesis of Oxygenates and Higher Hydrocarbons from Methane and Carbon Dioxide Using Cold Plasmas”, Energy & Fuels, vol. 18, núm. 1, pp. 148–153, 2004, doi: 10.1021/ef0300949.
dc.relationJ. Lee y J. J. Grabowski, “Reactions of the atomic oxygen radical anion and the synthesis of organic reactive intermediates”, Chem. Rev., vol. 92, núm. 7, pp. 1611–1647, 1992, doi: 10.1021/cr00015a007
dc.relationM. R. Nimlos, S. J. Blanksby, X. Qian, M. E. Himmel, y D. K. Johnson, “Mechanisms of glycerol dehydration”, J. Phys. Chem. A, vol. 110, núm. 18, pp. 6145–6156, 2006, doi: 10.1021/jp060597q
dc.relationW. Sun, J. Liu, X. Chu, C. Zhang, y C. Liu, “Theoretical study of the dynamics and thermal mechanisms of the reaction: Dehydration of glycerol to glycidol”, J. Mol. Struct. THEOCHEM, vol. 942, núm. 1–3, pp. 38–42, 2010, doi: 10.1016/j.theochem.2009.11.030.
dc.relationM. García-Melchor y N. López, “Homolytic products from heterolytic paths in H2 dissociation on metal oxides: The example of CeO2”, J. Phys. Chem. C, vol. 118, núm. 20, pp. 10921–10926, 2014, doi: 10.1021/jp502309r
dc.rightsAtribución-NoComercial 4.0 Internacional
dc.rightshttp://creativecommons.org/licenses/by-nc/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.titleEvaluación de la actividad catalítica de una muestra de la Dunita de Medellín en la generación de productos con valor agregado a partir de glicerol
dc.typeTrabajo de grado - Doctorado


Este ítem pertenece a la siguiente institución