dc.contributor | Niño Vásquez, Luis Fernando | |
dc.contributor | Izquierdo Borrero, Ledys María | |
dc.contributor | laboratorio de Investigación en Sistemas Inteligentes Lisi | |
dc.creator | Baquero Tibocha, Diego Andrés | |
dc.date.accessioned | 2023-05-25T19:48:30Z | |
dc.date.available | 2023-05-25T19:48:30Z | |
dc.date.created | 2023-05-25T19:48:30Z | |
dc.date.issued | 2023 | |
dc.identifier | https://repositorio.unal.edu.co/handle/unal/83874 | |
dc.identifier | Universidad Nacional de Colombia | |
dc.identifier | Repositorio Institucional Universidad Nacional de Colombia | |
dc.identifier | https://repositorio.unal.edu.co/ | |
dc.description.abstract | Los cuidadores de pacientes en estado crítico no siempre tienen las habilidades o la
experiencia para tratar este tipo de pacientes (Wheatley, 2006). Además, el deterioro
fisiológico se puede detectar a partir de cambios sutiles en los signos vitales dentro de una
Unidad de Cuidados Intensivos Pediátricos (UCIP) (Izquierdo, 2021). Esto conlleva
dificultades para el personal médico al realizar un pronóstico sobre una futura
complicación.
De acuerdo con lo anterior, este estudio tiene como objetivo implementar un prototipo de
software capaz de predecir estados fisiológicos a través de los signos vitales, siguiendo
como metodología el Proceso de Aprendizaje Automático (Machine Learning Process,
MLP) sobre el conjunto de datos seleccionado. El prototipo se implementó de forma exitosa
y se obtuvieron resultados prometedores en cuanto al uso de técnicas de aprendizaje
automático para representar el estado actual y futuro de los pacientes en UCIP. Por lo
tanto, se debe seguir trabajando en el esfuerzo de complementar el conjunto de datos e
implementar nuevas propuestas del uso de las técnicas de aprendizaje automático, y así
lograr una monitorización constante sobre los pacientes (Texto tomado de la fuente) | |
dc.description.abstract | Caregivers of critically ill patients do not always have the skills or experience to treat these
types of patients (Wheatley, 2006). Furthermore, physiological deterioration can be
detected from subtle changes in vital signs within a Pediatric Intensive Care Unit (PICU)
(Izquierdo, 2021). This leads to difficulties for medical personnel when making a prognosis
about a future complication.
Accordingly, this study aims to implement a software prototype capable of predicting
physiological states through vital signs, following the Machine Learning Process (MLP)
methodology on the selected data set. The prototype was successfully implemented, and
promising results were obtained regarding the use of machine learning techniques to
represent the current and future state of PICU patients. Therefore, work must continue in
the effort to complement the data set and implement new methods for the use of machine
learning techniques, and thus achieve constant monitoring of patients. | |
dc.language | spa | |
dc.publisher | Universidad Nacional de Colombia | |
dc.publisher | Bogotá - Ingeniería - Maestría en Ingeniería - Ingeniería de Sistemas y Computación | |
dc.publisher | Facultad de Ingeniería | |
dc.publisher | Bogotá, Colombia | |
dc.publisher | Universidad Nacional de Colombia - Sede Bogotá | |
dc.relation | Abromavičius, V. y Serackis, A. (2019). Sepsis Prediction Model Based on Vital Signs Related Features. | |
dc.relation | Amer, A.Y.A., Vranken, J., Wouters, F., Mesotten, D., Vandervoort, P., Storms, V., Luca, S., Vanrumste, B. y Aerts, J.-M. (2019). Feature engineering for ICU mortality prediction based on hourly to bi-hourly measurements. Applied Sciences (Switzerland), 9. | |
dc.relation | AnalystPrep (s. f.). Machine Learning Process. [Ilustración]. https://analystprep.com/study-notes/wpcontent/uploads/2020/04/MachineLearingApproaches_img1.jpg | |
dc.relation | Atashi, A., Ahmadian, L., Rahmatinezhad, Z., Miri, M., Nazeri, N. y Eslami, S. (2018). Development of a national core dataset for the Iranian ICU patients outcome prediction: A comprehensive approach. Journal of Innovation in Health Informatics, 25, 71-76. | |
dc.relation | Awad, A., Bader-El-Den, M., McNicholas, J. y Briggs, J. (2017). Early hospital mortality
prediction of intensive care unit patients using an ensemble learning approach.
International Journal of Medical Informatics, 108, 185-195. | |
dc.relation | Barnes, R., Clarke, D., Farina, Z., Sartorius, B., Brysiewicz, P., Laing, G., Bruce, J. y
Kong, V. (2018). Vital sign based shock scores are poor at triaging South African
trauma patients. American Journal of Surgery, 216, 235-239. | |
dc.relation | Bedoya, A.D., Clement, M.E., Phelan, M., Steorts, R.C., O'Brien, C. y Goldstein, B.A.
(2019). Minimal Impact of Implemented Early Warning Score and Best Practice Alert
for Patient Deterioration. Critical Care Medicine, 47, 49-55. | |
dc.relation | Bellew, S.D., Cabrera, D., Lohse, C.M. y Bellolio, M.F. (2017). Predicting Early Rapid
Response Team Activation in Patients Admitted From the Emergency Department: The
PeRRT Score. Academic Emergency Medicine, 24, 216-225. | |
dc.relation | Brilej, D., Stropnik, D., Lefering, R. y Komadina, R. (2017). Algorithm for activation of
coagulation support treatment in multiple injured patients––cohort study. European
Journal of Trauma and Emergency Surgery, 43, 423-430. | |
dc.relation | Brown, A., Ballal, A. y Al-Haddad, M. (2019). Recognition of the critically ill patient and
escalation of therapy. Anaesthesia and Intensive Care Medicine, 20, 1-5. | |
dc.relation | Carlin, C.S., Ho, L.V., Ledbetter, D.R., Aczon, M.D. y Wetzel, R.C. (2018). Predicting
individual physiologically acceptable states at discharge from a pediatric intensive care
unit. Journal of the American Medical Informatics Association, 25, 1600-1607. | |
dc.relation | Chen, T., Xu, J., Ying, H., Chen, X., Feng, R., Fang, X., Gao, H. y Wu, J. (2019).
Prediction of Extubation Failure for Intensive Care Unit Patients Using Light Gradient
Boosting Machine. IEEE Access, 7, 150960-150968. | |
dc.relation | De Pasquale, M., Moss, T.J., Cerutti, S., Calland, J.F., Lake, D.E., Moorman, J.R. y
Ferrario, M. (2017). Hemorrhage prediction models in surgical intensive care: Bedside
monitoring data adds information to lab values. IEEE Journal of Biomedical and Health
Informatics, 21, 1703-1710. | |
dc.relation | Ding, Y., Ma, X. y Wang, Y. (2018). Health status monitoring for ICU patients based on
locally weighted principal component analysis. Computer Methods and Programs in
Biomedicine, 156, 61-71. | |
dc.relation | Fagerström, J., Bång, M., Wilhelms, D. y Chew, M.S. (2019). LiSep LSTM: A Machine
Learning Algorithm for Early Detection of Septic Shock. Scientific Reports, 9. | |
dc.relation | Géron, A. (2017). Hands-On Machine Learning with Scikit-Learn and TensorFlow:
Techniques and Tools to Build Learning Machines. Van Duuren Media. | |
dc.relation | Ge, W., Huh, J.-W., Park, Y.R., Lee, J.-H., Kim, Y.-H. y A. Turchin (2018). An
Interpretable ICU Mortality Prediction Model Based on Logistic Regression and
Recurrent Neural Networks with LSTM units. AMIA Annual Symposium proceedings.
AMIA Symposium, 2018, 460-469. | |
dc.relation | Haider, A., Con, J., Prabhakaran, K., Anderson, P., Policastro, A., Feeney, J. y Latifi, R.
(2019). Developing a simple clinical score for predicting mortality and need for ICU in
trauma patients. American Surgeon, 85, 733-737. | |
dc.relation | Hever, G. , Cohen, L., O’Connor, M.F., Matot, I., Lerner, B. y Bitan, Y. (2020). Machine
learning applied to multi-sensor information to reduce false alarm rate in the ICU.
Journal of Clinical Monitoring and Computing, 34, 339-352. | |
dc.relation | Hever, G., Cohen, L., O’Connor, M. F., Matot, I., Lerner, B., & Bitan, Y. (2019). Machine
learning applied to multi-sensor information to reduce false alarm rate in the ICU.
Journal of Clinical Monitoring and Computing, 34(2), 339–352.
https://doi.org/10.1007/s10877-019-00307-x | |
dc.relation | Hirano, Y., Kondo, Y., Hifumi, T., Yokobori, S., Kanda, J., Shimazaki, J., Hayashida, K.,
Moriya, T., Yagi, M., Takauji, S., Tanaka, H. y Yaguchi, A. (2021). Machine learningbased mortality prediction model for heat-related illness. Scientific Reports, 11. | |
dc.relation | IBM Cloud Education. (2020, 15 julio). Machine Learning. IBM.
https://www.ibm.com/cloud/learn/machine-learning | |
dc.relation | Izquierdo, L. M., Nino, L. F., & Prieto Rojas, J. (2020). Modeling the vital sign space to
detect the deterioration of patients in a pediatric intensive care unit. 16th International
Symposium on Medical Information Processing and Analysis. Published.
https://doi.org/10.1117/12.2579629 | |
dc.relation | Izquierdo, L. M., Nino, L. F. (2021). Modelamiento del espacio de signos vitales para
detectar el deterioro de los pacientes en una unidad de cuidados intensivos.
Universidad Nacional de Colombia. | |
dc.relation | Karimi Moridani, M. y Haghighi Bardineh, Y. (2018). Presenting an efficient approach
based on novel mapping for mortality prediction in intensive care unit cardiovascular
patients. MethodsX, 5, 1291-1298. | |
dc.relation | Kefi, Z., Aloui, K. y Naceur, M.S. (2019). The early prediction of neonates mortality in
Intensive Care Unit. (pp. 304-306). | |
dc.relation | Koyner, J.L., Carey, K.A., Edelson, D.P. y Churpek, M.M. (2018). The development of a
machine learning inpatient acute kidney injury prediction model. Critical Care Medicine,
46, 1070-1077. | |
dc.relation | Li, X., Ge, P., Zhu, J., Li, H., Graham, J., Singer, A., Richman, P.S. y Duong, T.Q. (2020).
Deep learning prediction of likelihood of ICU admission and mortality in COVID-19
patients using clinical variables. PeerJ, 8. | |
dc.relation | Malycha, J., Farajidavar, N., Pimentel, M.A.F., Redfern, O., Clifton, D.A., Tarassenko, L.,
Meredith, P., Prytherch, D., Ludbrook, G., Young, J.D. y Watkinson, P.J. (2019). The
effect of fractional inspired oxygen concentration on early warning score performance:
A database analysis. Resuscitation, 139, 192-199. | |
dc.relation | Marafino, B.J., Park, M., Davies, J.M., Thombley, R., Luft, H.S., Sing, D.C., Kazi, D.S.
Dejong, C., Boscardin, W.J., Dean, M.L. y Dudley, R.A. (2018). Validation of Prediction
Models for Critical Care Outcomes Using Natural Language Processing of Electronic
Health Record Data. JAMA Network Open, 1. | |
dc.relation | Masud, M.M., Cheratta, M. y Harahsheh, A.R.A. (2018). Survival prediction of ICU
patients using knowledge intensive data grouping and selection. | |
dc.relation | Matrices de confusión - Training. (s. f.). Microsoft Learn. https://learn.microsoft.com/eses/training/modules/machine-learning-confusion-matrix/2-confusion-matrices | |
dc.relation | Mayampurath, A., Jani, P., Dai, Y., Gibbons, R., Edelson, D. y Churpek, M.M. (2020). A
vital sign-based model to predict clinical deterioration in hospitalized children. Pediatric
Critical Care Medicine, 820-826. | |
dc.relation | Melinosky, C., Yang, S., Hu, P., Li, H., Miller, C.H.T., Khan, I., Mackenzie, C., Chang, W.-
T., Parikh, G., Stein, D., Stein, D. y Badjatia, N. (2018). Continuous vital sign analysis to predict secondary neurological decline after traumatic brain injury. Frontiers in
Neurology, 9. | |
dc.relation | Messinger, A.I., Bui, N., Wagner, B.D., Szefler, S.J., Vu, T. y Deterding, R.R. (2019).
Novel pediatric-automated respiratory score using physiologic data and machine
learning in asthma. Pediatric Pulmonology, 54, 1149-1155. | |
dc.relation | Monteiro, F., Meloni, F., Baranauskas, J.A. y Macedo, A.A. (2020). Prediction of mortality
in Intensive Care Units: a multivariate feature selection. Journal of Biomedical
Informatics, 107. | |
dc.relation | Nielsen, A.B., Thorsen-Meyer, H.-C., Belling, K., Nielsen, A.P., Thomas, C.E., Chmura,
P.J., Lademann, M., Moseley, P.L., Heimann, M., Dybdahl, L., Perner, A. y Brunak, S.
(2019). Survival prediction in intensive-care units based on aggregation of long-term
disease history and acute physiology: a retrospective study of the Danish National
Patient Registry and electronic patient records. The Lancet Digital Health, 1, e78e89. | |
dc.relation | Parreco, J., Soe-Lin, H., Parks, J.J., Byerly, S., Chatoor, M., Buicko, J.L., Namias, N. y
Rattan, R. (2019). Comparing machine learning algorithms for predicting acute kidney
injury. American Surgeon, 85, 725-729. | |
dc.relation | Platzi: Cursos online profesionales de tecnología. (2018). Platzi.
https://platzi.com/tutoriales/1269-probabilidad-estadistica/2308-coeficiente-decorrelacion-que-es-y-para-que-sirve/?utm_source=google | |
dc.relation | Pollard, T.J., Johnson, A.E.W., Raffa, J.D., Celi, L.A., Mark, R.G. y Badawi, O. (2018).
The eICU collaborative research database, a freely available multi-center database for
critical care research. Scientific Data, 5. | |
dc.relation | R.G. Barry, T.T. Wolbert, F.B. Mozaffari, P.D. Ray, E.C. Thompson, T.W. Gress, & D.A.
Denning (2019). Comparison of geriatric trauma outcomes when admitted to a medical
or surgical service after a fall. Journal of Surgical Research, 233, 391-396. | |
dc.relation | Radhachandran, A., Garikipati, A., Zelin, N.S., Pellegrini, E., Ghandian, S., Calvert, J.,
Hoffman, J., Mao, Q. y Das, R. (2021). Prediction of short-term mortality in acute heart
failure patients using minimal electronic health record data. BioData Mining, 14. | |
dc.relation | Rubin, J., Potes, C., Xu-Wilson, M., Dong, J., Rahman, A., Nguyen, H. y Moromisato, D.
(2018). An ensemble boosting model for predicting transfer to the pediatric intensive
care unit. International Journal of Medical Informatics, 112, 15-20. | |
dc.relation | Salahuddin, N., Shafquat, A., Marashly, Q., Zaza, K.J., Sharshir, M., Khurshid, M., Ali, Z.,
Malgapo, M., Jamil, M.G., Shoukri, M., Hijazi, M. y Al-Ghamdi, B. (2018). Increases in
Heart Rate Variability Signal Improved Outcomes in Rapid Response Team
Consultations: A Cohort Study. Cardiology Research and Practice, 2018. | |
dc.relation | Satchidanand, N., Servoss, T.J., Singh, R., Bosinski, A.M., Tirpak, P., Horton, L.L. y
Naughton, B.J. (2018). Development of a Risk Tool to Support Discussions of Care for
Older Adults Admitted to the ICU With Pneumonia. American Journal of Hospice and
Palliative Medicine, 35, 1201-1206. | |
dc.relation | Shamout, F.E., Zhu, T., Sharma, P., Watkinson, P.J. y Clifton, D.A. (2020). Deep
Interpretable Early Warning System for the Detection of Clinical Deterioration. IEEE
Journal of Biomedical and Health Informatics, 24, 437-446. | |
dc.relation | Tamir, M. (2021, 29 enero). What Is Machine Learning? UCB-UMT.
https://ischoolonline.berkeley.edu/blog/what-is-machine-learning/ | |
dc.relation | Timm, F.P., Zaremba, S., Grabitz, S.D., Farhan, H.N., Zaremba, S., Siliski, E., Shin, C.H.,
Muse, S., Friedrich, S., Mojica, J.E., Ramachandran, S.-K. y Eikermann, M. (2018).
Effects of opioids given to facilitate mechanical ventilation on sleep apnea after
extubation in the intensive care unit. Sleep, 41. | |
dc.relation | Tsur, E., Last, M., Garcia, V.F., Udassin, R., Klein, M. y Brotfain, E. (2019). Hypotensive
episode prediction in icus via observation window splitting. LNAI, Vol. 11053. | |
dc.relation | Viegas, R., Salgado, C.M., Curto, S., Carvalho, J.P., Vieira, S.M. y Finkelstein, S.N.
(2017). Daily prediction of ICU readmissions using feature engineering and
ensemble fuzzy modeling. Expert Systems with Applications, 79, 244-253. | |
dc.relation | Wang, Y., Wei, Y., Yang, H., Li, J., Zhou, Y. y Wu, Q. (2020). Utilizing imbalanced
electronic health records to predict acute kidney injury by ensemble learning and time
series model. BMC Medical Informatics and Decision Making, 20. | |
dc.relation | Wellner, B., Grand, J., Canzone, E., Coarr, M., Brady, P.W., Simmons, J., Kirkendall, E.,
Dean, N. Kleinman, M. y Sylvester, P. (2017). Predicting unplanned transfers to the
intensive care unit: A machine learning approach leveraging diverse clinical elements.
JMIR Medical Informatics, 5. | |
dc.relation | Yoon, J.H., Jeanselme, V., Dubrawski, A., Hravnak, M., Pinsky, M.R. y Clermont, G.
(2020). Prediction of hypotension events with physiologic vital sign signatures in the
intensive care unit. Critical Care, 24. | |
dc.relation | Zachariasse J.M., Van Der Lee, D., Seiger, N., De Vos-Kerkhof, E., Oostenbrink, R. y
Moll, H.A. (2017). The role of nurses' clinical impression in the first assessment of
children at the emergency department. Archives of Disease in Childhood, 102, 1052-
1056. | |
dc.relation | Zimmerman, L.P., Reyfman, P.A., Smith, A.D.R., Zeng, Z., Kho, A., Sanchez-Pinto, L.N. y
Luo, Y. (2019). Early prediction of acute kidney injury following ICU admission using a
multivariate panel of physiological measurements. BMC Medical Informatics and
Decision Making, 19. | |
dc.rights | Atribución-NoComercial 4.0 Internacional | |
dc.rights | http://creativecommons.org/licenses/by-nc/4.0/ | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.title | Implementación de un prototipo de software para predecir complicaciones en pacientes en unidad de cuidados intensivos pediátricos (UCIP), a través de modelos de aprendizaje automático | |
dc.type | Trabajo de grado - Maestría | |