dc.contributorRuiz-Mendoza, Belizza J.
dc.contributorGipem ­ Grupo de Investigación en Potencia, Energía y Mercados
dc.contributorSosapanta Salas, Joseph Camilo [0000-0002-2035-9323]
dc.contributorSosapanta Salas, Joseph Camilo [0001538062]
dc.creatorSosapanta Salas, Joseph Camilo
dc.date.accessioned2023-01-23T15:09:22Z
dc.date.accessioned2023-06-06T22:38:12Z
dc.date.available2023-01-23T15:09:22Z
dc.date.available2023-06-06T22:38:12Z
dc.date.created2023-01-23T15:09:22Z
dc.date.issued2023
dc.identifierhttps://repositorio.unal.edu.co/handle/unal/83058
dc.identifierUniversidad Nacional de Colombia
dc.identifierRepositorio Institucional Universidad Nacional de Colombia
dc.identifierhttps://repositorio.unal.edu.co/
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/6650806
dc.description.abstractLa transición energética está transformando el funcionamiento y operación de los sistemas eléctricos de potencia, provocando así que se diversifique la matriz energética a través de la inclusión de diferentes fuentes de generación de energía eléctrica. Este documento describe los impactos de la energía eólica sobre la estabilidad transitoria del sistema de potencia, empleando un sistema de prueba de nueve barras y analizando diferentes localizaciones de las fallas. A partir de los resultados se encontró que, en general, las oscilaciones de las posiciones angulares del rotor crecen en la medida que se incrementa el nivel de participación de energía eólica. También, teniendo en cuenta que los indicadores de estabilidad bajos representan buenos márgenes de estabilidad, se encontró que para los diferentes escenarios de participación de energía eólica, la estabilidad transitoria es susceptible a la localización de las fallas. (Texto tomado de la fuente)
dc.description.abstractThe energy transition is transforming the functioning and operation of the electric power system, thus causing the energy mix to diversify through the inclusion of different electricity generation sources. This document describes the impacts of wind power on the power system transient stability, using a nine-bus test system and analyzing different fault locations. From the results it was found that, in general, the oscillations of the rotor angular positions grow as the level of participation of wind power increases. Also, considering that low stability indicators represent good stability margins, it was found that for the different wind power participation scenarios, transient stability is susceptible to fault location.
dc.languagespa
dc.publisherUniversidad Nacional de Colombia
dc.publisherManizales - Ingeniería y Arquitectura - Maestría en Ingeniería - Ingeniería Eléctrica
dc.publisherFacultad de Ingeniería y Arquitectura
dc.publisherManizales, Colombia
dc.publisherUniversidad Nacional de Colombia - Sede Manizales
dc.relationV. Akhmatov, Analysis of Dynamic Behaviour of Electric Power Systems with Large Amount of Wind Power. Doctoral thesis, Universidad T´ecnica de Dinamarca, Lyngby, 2003.
dc.relationJ. G. Slootweg, Wind Power: Modelling and Impact on Power System Dynamics. Doctoral thesis, Delft University of Technology, Delft, 2003.
dc.relationY. Coughlan, “Wind turbine modelling for power system stability analysis – a system operator perspective,” IEEE Transactions on Power Systems, vol. 22, pp. 929–936, 2007.
dc.relationM. Vittal, E. O’Malley and A. Keane, “Rotor angle stability with high penetrations of wind generation,” IEEE Transactions on Power Systems, vol. 27, pp. 353–362, 2012.
dc.relationA. Agarala and et al., “Transient stability analysis of a multi-machine power system integrated with renewables,” Energies, vol. 15, no. 13, 2022.
dc.relationD. Trudnowski, “Fixed-speed wind-generator and wind- park modeling for transient stability studies,” IEEE Transactions on Power Systems, vol. 19, pp. 1911–1917, 2004.
dc.relationM. Rahimi and M. Parniani, “Dynamic behavior and transient stability analysis of fixed speed wind turbines,” Renewable Energy, vol. 34, pp. 2613–2624, 2009.
dc.relationM. Reza, Stability Analysis of Transmission System with High Penetration of Distributed Generation. Doctoral thesis, Delft University of Technology, Delft, 2006.
dc.relationM. Zapata Ceballos, “Estabilidad de peque˜na se˜nal en sistemas de energ´ıa el´ectrica con alta penetraci´on de generaci´on renovable,” Master’s thesis, UNAL Medell´ın, 2020.
dc.relationJ. Chow and K. Cheung, “A toolbox for power system dynamics and control engineering education and research,” IEEE Transactions on Power Systems, vol. 7, no. 4, pp. 1559– 1564, 1992.
dc.relationF. Milano, “An open source power system analysis toolbox,” IEEE Transactions on Power Systems, vol. 20, no. 3, pp. 1199–1206, 2005.
dc.relationS. Cole and R. Belmans, “Matdyn, a new matlab-based toolbox for power system dynamic simulation,” IEEE Transactions on Power Systems, vol. 26, no. 3, pp. 1129–1136, 2011.
dc.relationI. Abdulrahman, “Matlab-based programs for power system dynamic analysis,” IEEE Open Access Journal of Power and Energy, vol. 7, pp. 59–69, 2020.
dc.relationC. Gear, “Simultaneous numerical solution of differential-algebraic equations,” IEEE Transactions on Circuit Theory, vol. 18, no. 1, pp. 89–95, 1971.
dc.relationP. Aristidou, D. Fabozzi, and T. Van Cutsem, “Dynamic simulation of large-scale power systems using a parallel schur-complement-based decomposition method,” IEEE Transactions on Parallel and Distributed Systems, vol. 25, no. 10, pp. 2561–2570, 2014.
dc.relationF. Milano, “Semi-implicit formulation of differential-algebraic equations for transient stability analysis,” IEEE Transactions on Power Systems, vol. 31, no. 6, pp. 4534–4543, 2016.
dc.relationC. Wang, K. Yuan, P. Li, B. Jiao, and G. Song, “A projective integration method for transient stability assessment of power systems with a high penetration of distributed generation,” IEEE Transactions on Smart Grid, vol. 9, no. 1, pp. 386–395, 2018.
dc.relationJ. Sosapanta Salas, “Energ´ıa e´olica en colombia: panorama y perspectivas bajo la triple cuenta de resultados,” Master’s thesis, UNAD, 2020.
dc.relationK. R. Rao, Wind Energy for Power Generation: Meeting the Challenge of Practical Implementation. Brandon: Springer, 1st ed., 2019.
dc.relationM. R. Patel and O. Beik, Wind and Solar Power Systems: Design, Analysis, and Operation. Florida: CRC Press, 3rd ed., 2021.
dc.relationJ. Pitteloud, “Wind energy international. obtenido de global wind installations,” 2020.
dc.relationUPME, “Plan de expansi´on de referencia generaci´on transmisi´on 2020-2034,” 2020.
dc.relationC. Gonz´alez and J. Barney, El viento del este llega con revoluciones: Multinacionales y transici´on con energ´ıa e´olica en territorio Way´uu. Bogot´a: Indepaz, 1st ed., 2019.
dc.relationF. Milano, Power System Modelling and Scripting. La Mancha: Springer, 1st ed., 2010.
dc.relationM. Eremia and M. Shahidehpour, Handbook of Electrical Power System Dynamics. New Jersey: John Wiley & Sons Ltda., 1st ed., 2013.
dc.relationJ. G. Slootweg and W. L. Kling, “The impact of large scale wind power generation on power system oscillations,” Electric Power Systems Research, vol. 67, pp. 9–20, 2003.
dc.relationIEC61400-27-1, “Wind energy generation systems - part 27-1: Electrical simulation models - generic models,” 2020.
dc.relationJ. Fortmann, Modeling of Wind Turbines with Doubly Fed Generator System. Duisburg: Springer Vieweg, 1st ed., 2015.
dc.relationA. D. Hansen, “Dynamic wind turbine models in power system simulation tool digsilent,” tech. rep., Technical University of Denmark, Riso National Laboratory, 2007.
dc.relationM. Pavella and P. G. Murthy, Transient Stability of Power Systems. Liege: John Wiley & Sons Ltda., 1st ed., 1994.
dc.relationP. Kundur, Power System Stability and Control. Palo Alto, California: McGraw-Hill, Inc., 1st ed., 1994.
dc.relationK. R. Padiyar, Power System Dynamics: Stability and Control. Hyderabad: BS Publicaciones, 1st ed., 2008.
dc.relationJ. Machowski, J. Bialek and J. Bumby, Power System Dynamics: Stability and Control. Great Britain: John Wiley & Sons, Ltd., 2nd ed., 2008.
dc.relationS. Cole, “Matdyn user’s manual version 1.2,” tech. rep., Universidad Cat´olica Leuven, ESAT-ELECTRA, 2010.
dc.relationM. A. Pai and D. Chatterjee, Computer Techniques in Power System Analysis. Illinois: McGraw Hill Education, 3rd ed., 2014.
dc.relationJ. Grainger and W. Stevenson, An´alisis de Sistemas de Potencia. Carolina del Norte: McGraw-Hill Interamericana, 2nd ed., 1996.
dc.relationN. Hatziargyriou and et al., “Definition and classification of power system stability – revisited & extended,” IEEE Transactions on Power Systems, vol. 36, no. 4, pp. 3271– 3281, 2021.
dc.relationM. J. Basler and R. C. Schaefer, “Understanding power system stability,” IEEE Transactions on Industry Applications, vol. 44, pp. 463–474, 2008.
dc.relationM. Secanell and F. Corcoles, “Daes implementation of dynamic power systems,” in 10th International Conference on Harmonics and Quality of Power. Proceedings (Cat. No.02EX630), vol. 2, pp. 663–669 vol.2, 2002.
dc.relationE. A. Celaya, J. J. A. Aguirrezabala, and P. Chatzipantelidis, “Implementation of an adaptive bdf2 formula and comparison with the matlab ode15s,” Procedia Computer Science, vol. 29, pp. 1014–1026, 2014.
dc.rightsAtribución-NoComercial 4.0 Internacional
dc.rightshttp://creativecommons.org/licenses/by-nc/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.titleSimulación de la influencia de la generación de energía eólica en la estabilidad transitoria
dc.typeTrabajo de grado - Maestría


Este ítem pertenece a la siguiente institución