dc.contributor | Vergara Cardozo, Sandra | |
dc.contributor | Martínez Flórez, Guillermo | |
dc.creator | Rodríguez Quevedo, Luisa Paulina | |
dc.date.accessioned | 2023-04-24T21:37:03Z | |
dc.date.accessioned | 2023-06-06T22:37:15Z | |
dc.date.available | 2023-04-24T21:37:03Z | |
dc.date.available | 2023-06-06T22:37:15Z | |
dc.date.created | 2023-04-24T21:37:03Z | |
dc.date.issued | 2023 | |
dc.identifier | https://repositorio.unal.edu.co/handle/unal/83771 | |
dc.identifier | Universidad Nacional de Colombia | |
dc.identifier | Repositorio Institucional Universidad Nacional de Colombia | |
dc.identifier | https://repositorio.unal.edu.co/ | |
dc.identifier.uri | https://repositorioslatinoamericanos.uchile.cl/handle/2250/6650795 | |
dc.description.abstract | La distribución Unitaria Birnbaum Saunders (UBS), [Mazucheli et al., 2018a], tiene soporte en el intervalo (0,1), motivo por el cual se emplea con éxito en el modelamiento de tasas e indicadores. Se presentan dos nuevas distribuciones bivariadas, la distribución Bivariada Birnbaum Saunders Unitaria (BVUBS) y la distribución Bivariada Sinh-Normal Birnbaum Saunders Unitaria (BVUSHN), además como efecto natural el modelo de regresión para el caso de covariables en el modelo, empleando para ello el concepto de distribuciones condicionalmente especificadas, dichas distribuciones son capaces de modelar tasas y proporciones en el plano unidad, y presentan un mejor ajuste a datos comparadas con otras distribuciones. Igualmente, se presentan algunas propiedades generales de los modelos, valores esperados e inferencia por máxima verosimilitud y aplicación a datos reales. Conjuntamente al presente trabajo de maestría se publica el artículo The Multivariate Skewed Log-Birnbaum–Saunders Distribution and Its Associated Regression Model, [Martínez-Flórez et al., 2023], el cual se enfocó en la extensión multivariada de la distribución Sinh-Normal Unitaria, estudiando en detalle las propiedades de la distribución e inferencia estadística, se incluye un estudio de simulación asociado al modelo de regresión y dos aplicaciones con datos reales, logrando concluir que son potencialmente útiles para modelar datos de proporciones, tasas o índices. (Texto tomado de la fuente) | |
dc.description.abstract | The unit-Birnbaum-Saunders distribution (UBS), [Mazucheli et al., 2018a], has support in the interval (0,1), which is why it is used successfully in the modeling of rates and indicators. Two new bivariate distributions are presented, the Bivariate Unit-Birnbaum-Saunders distribution (BVUBS) and the Bivariate Unit-Sinh-Normal Birnbaum Saunders distribution (BVUSHN), as well as the natural effect the regression model for the case of covariates in the model, using the concept of conditionally specified distributions, these distributions are capable of modeling rates and proportions in the unit plane, and present a better fit to data compared to other distributions. Likewise, some general properties of the models, expected values and inference by maximum likelihood and application to real data are presented. The article The Multivariate Skewed Log-Birnbaum–Saunders Distribution and Its Associated Regression Model, [Martínez-Flórez et al., 2023], which focused on the multivariate extension of the Unit-Sinh-Normal Distribution, is published together with this master's thesis, studying in detail the properties of the distribution and statistical inference, a simulation study associated with the regression model and two applications with real data are included. We conclude that they are potentially useful for modeling ratio, rate or index data. | |
dc.language | spa | |
dc.publisher | Universidad Nacional de Colombia | |
dc.publisher | Bogotá - Ciencias - Maestría en Ciencias - Estadística | |
dc.publisher | Facultad de Ciencias | |
dc.publisher | Bogotá,Colombia | |
dc.publisher | Universidad Nacional de Colombia - Sede Bogotá | |
dc.relation | Ahmed, S., Castro-Kuriss, C., Leiva, V., Flores, E., and Sanhueza, A.
(2010). Truncated version of the birnbaum–saunders distribution with an application in
financial risk. Pakistan Journal of Statistics, 26:293–311 | |
dc.relation | Arnold, B., Castillo, E., and Sarabia, J. (2002). Conditionally specified
multivariate skewed distributions. The Indian Journal of Statistics, 64(2):206–226. http:
//www.jstor.org/stable/25051391 | |
dc.relation | Athayde, E. (2017). A characterization of the birnbaum–saunders distribution.
REVSTAT Statistical Journal, 15:333–354 | |
dc.relation | Azzalini, A. (1985). A class of distributions which includes the normal
ones. Scandinavian Journal of Statistics, 12(2):171–178. http://www.jstor.org/stable/
4615982 | |
dc.relation | Barlow, R. and Proschan, F. (1965). Mathematical theory of
reliability. Wiley, 1 | |
dc.relation | Barros, M., Galea, M., Gonzalez, M., and Leiva, V. (2010). Infuence
diagnostics in the tobit censored response model. Stat. Methods Appl., 19:379–397. https:
//doi.org/10.1007/s10260-010-0135-y | |
dc.relation | Bartlett, M. and Kendall, D. (1946). The statistical analysis of
variance-heterogeneity and the logarithmic transformation. Journal of the Royal Statistical
Society: Series B, 8(1):128–138. https://doi.org/10.2307/2983618 | |
dc.relation | Bebbington, M., Lai, C., and Zitikis, R. (2008). A proof of the
shape of the birnbaum–saunders hazard rate function. Mathematical Scientist, 33:49–56 | |
dc.relation | Birnbaum, Z., Esary, J., and Marshall, A. (1966). Stochastic characterization
of wear-out for components and systems. Annals of Mathematical Statistics,
37:816–825. https://www.jstor.org/stable/2238571 | |
dc.relation | Birnbaum, Z. W. and Saunders, S. (1969). A new family
of life distributions. Journal of Applied Probability, 6(2):319–327. https://doi.org/10.
2307/3212003 | |
dc.relation | Cepeda Cuervo, E., Achcar, J., and Garrido Lopera, B. (2014).
Bivariate beta regression models: Joint modeling of the mean, dispersion and association
parameters. Journal of Applied Statistics, 41. https://doi.org/10.1080/02664763.
2013.847071 | |
dc.relation | Chhikara, R. and Folks, J. (1977). The inverse gaussian distribution
as a lifetime model. Technometrics, 19(4):461–468. https://doi.org/10.2307/
1267886 | |
dc.relation | Cook, D., Kieschnick, R., and McCullough, B. (2008). Regression analysis
of proportions in finance with self selection. Journal of Empirical Finance, 15:860–867.
https://doi.org/10.1016/j.jempfin.2008.02.001 | |
dc.relation | Desmond, A. (1985). Stochastic models of failure in random environments.
Statistical Society of Canada, 13(3):171–183. https://doi.org/10.2307/3315148 | |
dc.relation | Davis, J. (1952). An analysis of some failure data. Journal of the American
Statistical Association, 47:113–150. https://doi.org/10.2307/2280740 | |
dc.relation | Dupuis, D. and Mills, J. (1998). Robust estimation of the
birnbaum-saunders distribution. IEEE Transactions on Reliability, 47:88–95 | |
dc.relation | Esary, J. and Marshall, A. (1973). Shock models and wear processes.
The Annals of Probability, 1:627–649. https://www.jstor.org/stable/2959434 | |
dc.relation | Farias, R. and Lemonte, A. (2011). Bayesian inference for the
birnbaum–saunders nonlinear regression model. Statistical Methods and Applications,
20:423–438. https://doi.org/10.1007/s10260-011-0165-0 | |
dc.relation | Díaz, J. and Leiva, V. (2005). A new family of life distributions
based on the elliptically contoured distributions. Journal of Statistical Planning
and Inference, 128:445–457. https://www.sciencedirect.com/science/article/pii/
S0378375804000072 | |
dc.relation | Díaz-García, J. and Domínguez-Molina, J.
(2006). Some generalisations of birnbaum–saunders and sinh-normal distributions. International
Mathematical Forum, 1:1709–1727. http://dx.doi.org/10.12988/imf.2006.
06146 | |
dc.relation | Freeman, D. (2007). Drunk driving legislation and traffic fatalities: New
evidence on bac 08 laws. Contemporary Economic Policy 25, 293–308 | |
dc.relation | Freudenthal, A. and Shinozuka, M. (1961). Structural
Safety Under Conditions of Ultimate Load Failure and Fatigue. Wright Air Development
Division | |
dc.relation | Galea, M., Leiva, V., and Paula, G. (2004). Influence diagnostics in
log-birnbaum–saunders regression models. Journal of Applied Statistics, 31:1049–1064.
https://doi.org/10.1080/0266476042000280409 | |
dc.relation | Garcia, F., Uribe, M., Leiva, V., and Aykroyd, G. (2017). Birnbaumsaunders
spatial modelling and diagnostics applied to agricultural engineering data. Stochastic
Environmental Research and Risk Assessment, 31:105–124. https://doi.org/
10.1007/s00477-015-1204-4 | |
dc.relation | Guiraud, P., Leiva, V., and Fierro, R. (2009). A non-central version
of the birnbaum–saunders distribution for reliability analysis. IEEE Transactions on Reliability.,
58:152–160. https://ieeexplore.ieee.org/document/4781589 | |
dc.relation | Gupta, A. and Nadarajah, S. (2004). Handbook of Beta Distribution
and Applications. CRC Press | |
dc.relation | Kumaraswamy, P. (1980). A generalized probability density function
for double-bounded random processes. Journal of Hydrology, 46:79–88. https://doi.
org/10.1016/0022-1694(80)90036-0 | |
dc.relation | Kundu, D. (2015). Bivariate log-birnbaum-saunders distribution. Statistics,
49:900–917. https://doi.org/10.1080/02331888.2014.915840 | |
dc.relation | Kundu, D., N. Balakrishnan, B., and Jamalizadeh, A. (2010). Bivariate
birnbaum–saunders distribution and associated inference. Journal of Multivariate
Analysis, 101:113–125. https://doi.org/10.1016/j.jmva.2009.05.005 | |
dc.relation | Kundu, D., Narayanaswamy, B., and Jamalizadeh, A. (2013). Generalized
multivariate birnbaum–saunders distributions and related inferential issues. Journal
of Multivariate Analysis, 40:230–244. https://doi.org/10.1016/j.jmva.2012.10.017 | |
dc.relation | Leiva, V. (2016). The Birnbaum Saunders distribution, volume 1. Elsevier | |
dc.relation | Leiva, V., Riquelme, M., Balakrishnan, N., and Sanhueza, A. (2006). A
new fatigue life model based on the family of skew-elliptical distributions. Stat. Theory
Methods, 35:229–244 | |
dc.relation | Leiva, V., Riquelme, M., Balakrishnan, N., and Sanhueza, A. (2008).
Lifetime analysis based on the generalized birnbaum–saunders distribution. Computational
Statistics Data Analysis, 52:2079–2097. https://doi.org/10.1016/j.csda.2007.07.
003 | |
dc.relation | Leiva, V., Soto, G., Cabrera, E., and Cabrera, G. (2011). Nuevas cartas
de control basadas en la distribución Birnbaum-Saunders y su implementación. Revista
Colombiana de Estadística, 34:147–176 | |
dc.relation | Leiva, V., Vilca-Labra, F., Balakrishnan, N., and Sanhueza, A. (2010).
A skewed sinh-normal distribution and its properties and application to air pollution.
Communications in Statistics - Theory and Methods, 39:426–443. https://doi.org/10.
1080/03610920903140171 | |
dc.relation | Lemonte, A. (2013). Multivariate birnbaum–saunders regression model.
Journal of Statistical Computation and Simulation, 83(12):2244–2257. https://doi.org/
10.1080/00949655.2012.688054 | |
dc.relation | Lemonte, A. (2016). A note on the fisher information matrix of the birnbaum–
saunders distribution. Journal of Statistical Theory and Applications, 15:196–205.
https://doi.org/10.2991/jsta.2016.15.2.9 | |
dc.relation | Lemonte, A. and Moreno-Arenas, G. (2019). On a
multivariate regression model for rates and proportions. Journal of Applied Statistics,
46:1084–1106. https://doi.org/10.1080/02664763.2018.1534945 | |
dc.relation | Lemonte, A. J. (2012). A log- birnbaum saunders regression model with
asymmetric errors. Journal of Statistical Computation and Simulation, 82:1775–1787.
https://doi.org/10.1080/00949655.2011.595715 | |
dc.relation | Lieblein, J. (1956). Statistical investigation of the fatigue life of deep ball
bearing. Journal of National Bureau of Standards, 57:273–316 | |
dc.relation | Martínez-Flórez, G. and Tovar-Falón, R. (2021).
New regression models based on the unit-sinh-normal distributions: Properties, inference,
and applications. Mathematics, 9(11), 1231. https://doi.org/10.3390/math9111231 | |
dc.relation | Martínez-Flórez, G., Azevedo, R., and Moreno-Arenas, G.
(2017). Multivariate log-birnbaum–saunders regression models. Communications in Statistics
- Theory and Methods, 46:10166–10178. https://doi.org/10.1080/03610926.
2016.1231818 | |
dc.relation | Mazucheli, J., Leiva, V., Alves, B., and Menezes, A. (2021). A
new quantile regression for modeling bounded data under a unit birnbaum- saunders
distribution with aplplications in medicine and politics. Symmetry, 13(4):682. https:
//doi.org/10.3390/sym13040682 | |
dc.relation | Martínez-Flórez, G., Vergara-Cardozo, S., Tovar-Falón, R.,
and Rodriguez-Quevedo, L. (2023). The multivariate skewed log-birnbaum saunders
distribution and its associated regression model. Mathematics, 11(5), 1095. http:
//dx.doi.org/10.3390/math11051095 | |
dc.relation | Mazucheli, J., Menezes, A., and Dey, S. (2018a). The unit
birnbaum- saunders distribution with applications. Chilean Journal of Statistics, 9:47–
57 | |
dc.relation | Mazucheli, J., Menezes, F., and Ghitany, M. (2018b). The unit weibull
distribution and associated inference. Journal of Applied Probability and Statistics,
13:1–22 | |
dc.relation | Miner, M. (1945). Cumulative damage in fatigue. Journal of Applied Mechanics,
12(3):A159–A164. https://doi.org/10.1115/1.4009458 | |
dc.relation | Nelson, W. and Hahn, G. (1972). Linear estimation of a regression
relationships from censored data, part i-simple methods and their applications. Technometrics,
14:247–269. https://doi.org/10.1080/00401706.1972.10488912 | |
dc.relation | Ortega, E., Bolfarine, H., and Paula, G. (2003). Infuence diagnostics
in generalized log-gamma regression models. Computational Statistics Data Analysis,
42:165–186. https://doi.org/10.1016/S0167-9473(02)00104-4 | |
dc.relation | Owen, W. and Padgett, W. (1999). Accelerated test models
for system strength based on birnbaum–saunders distribution. Lifetime Data Analysis,
5(2):133–147. https://doi.org/10.1023/A:1009649428243 | |
dc.relation | R Core Team (2022). R: A Language and Environment for Statistical
Computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.
R-project.org/ | |
dc.relation | Rieck, J. and Nedelman, J. (1991). A log-linear model for
the birnbaum–saunders distribution. Technometrics, 33(1):51–60. https://doi.org/
10.2307/1269007 | |
dc.relation | Shea, J. and Brown, K. (2022). Wooldridge: 115 data sets. In
Introductory Econometrics: A Modern Approach, 7e, R package version 1.4-2 | |
dc.relation | Vilca, F., Narayanaswamy, B., and C., B. (2014). A robust extension of
the bivariate birnbaum–saunders distribution and associated inference. Journal of Multivariate
Analysis, 35:418–435. https://doi.org/10.1016/j.jmva.2013.11.005 | |
dc.relation | Volodin, I. and Dzhungurova, O. (2000). On limit distribution
emerging in the generalized birnbaum–saunders model. Journal of Mathematical
Science, 99:1348–66. https://doi.org/10.1007/BF02674095 | |
dc.relation | Xie, F. and Wei, B. (2007). Diagnostics analysis for logbirnbaum–
saunders regression models. Computational Statistics y Data Analysis, 51:4692–
4706. https://doi.org/10.1016/j.csda.2006.08.030 | |
dc.relation | Zelen, M. and Dannemiller, M. (1961). The robustness of life
testing procedures derived from the exponential distribution. Technometrics, 3(1):29–49.
https://doi.org/10.2307/1266475 | |
dc.relation | Lemonte, A., Martínez-Florez, G., and Moreno-Arenas, G. (2015b).
Multivariate birnbaum–saunders distribution: Properties and associated inference. Journal
of Statistical Computation and Simulation, 85:374–392. https://doi.org/10.1080/
00949655.2013.823964 | |
dc.relation | Lemonte, A., Martínez, G., and Moreno-Arenas, G. (2015a). Multivariate
birnbaum–saunders distribution: properties and associated inference. Journal
of Statistical Computation and Simulation, 1:374–392. https://doi.org/10.1080/
00949655.2013.823964 | |
dc.relation | Martínez-Flórez, G., Bolfarine, H., and Gómez, H. (2015).
Doubly censored power-normal regression models with inflation. Journal of Theoretical
and Applied Statistics, 24:265–286. https://doi.org/10.1007/s11749-014-0406-2 | |
dc.relation | Kao, J. (1959). A graphical estimation of mixed weibull parameters in life-testing
of electron tubes. Technometrics, 1:389–407. https://doi.org/10.2307/1266719 | |
dc.rights | Atribución-NoComercial-SinDerivadas 4.0 Internacional | |
dc.rights | http://creativecommons.org/licenses/by-nc-nd/4.0/ | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.title | Distribución Bivariada Birnbaum-Saunders Unitaria | |
dc.type | Trabajo de grado - Maestría | |