dc.contributorAgulles Pedrós, Luis
dc.creatorCoy López, Julián Andrés
dc.date.accessioned2022-10-25T15:05:52Z
dc.date.available2022-10-25T15:05:52Z
dc.date.created2022-10-25T15:05:52Z
dc.date.issued2022-10-20
dc.identifierhttps://repositorio.unal.edu.co/handle/unal/82448
dc.identifierUniversidad Nacional de Colombia
dc.identifierRepositorio Institucional Universidad Nacional de Colombia
dc.identifierhttps://repositorio.unal.edu.co/
dc.description.abstractEn el presente proyecto se estima la dosis impartida por radiación ionizante en el gel dosimétrico con formulación MAGIC. Este ha sido comúnmente utilizado para la medición de dosis de radiación superiores a 1 cGy por medio de técnicas de regresión entre los valores de tasa de relajación y dosis. El gel se caracteriza por estar compuesto de ácido metacrilico, usado en fantomas equivalentes a tejido blando. El radioisotopo 99mTc se utiliza para irradiar y así calibrar las muestras del gel con diferentes valores de dosis en el rango de dosis bajas (µSv-mSv). Se propone realizar regresiones lineales entre las mediciones teniendo en cuenta la desviación estándar en la medida y el valor de los ajustes con el (χ2/DoF), tal que se obtenga una mejor evaluación del ajuste. Se presenta un método que selecciona las zonas de las muestras del gel que ofrecen mayor fiabilidad en los datos y mejora la correlación entre dosis nominal y tasa de relajación. A través del método por píxel se obtiene 60 % de probabilidad de que los resultados medidos coincidan con el modelo propuesto, la sensibilidad del gel es de (1.2±0.4)×10−3 [ms−1 mGy−1 ], con incertidumbre relativa de 33%. Los resultados conseguidos permiten establecer que el gel polimérico MAGIC puede calibrarse con buena correlación a través de una regresión lineal para valores de dosis superiores a 0.8 mGy. No obstante, en el límite de dosis bajas el error sistemático de la estabilidad térmica del gel puede afectar su precisión y desempeño. (Texto tomado de la fuente)
dc.description.abstractIn this project, the imparted dose by ionizing radiation is measured in the dosimetric gel of MAGIC formulation. It has been widely used for measurement of radiation doses greater than 1 cGy through regression techniques between the measured values of relaxation rate and dose. The gel is composed of methacrylic acid, this is the main component in equivalent soft tissue phantoms. The 99mTc radioisotope is used to irradiate and calibrate the gel samples with different dose values in the low dose range (Sv − mSv). It is proposed to carry out linear regressions of measurements, taking into account the standard deviations and the (χ2/DoF) values of the adjustments, such that a better evaluation of the adjustment is obtained. A method is shown to select the regions of the samples that offer greater confidence in the data and let us improve the correlation between the nominal dose and the relaxation rate. Through the pixel method, a probability of 60 % between measured values and the proposed method is found, the gel sensitivity is (1.20.4) × 10−3 [ms−1 mGy−1 ], with a relative uncertainty of 33 %. The results allow establishing that the MAGIC polymeric gel can be calibrated with good correlation for dose values greater than 0.8 mGy. However, in the low dose limit, the systematic error in the thermal stability of the gel can affect its precision and performance.
dc.languagespa
dc.publisherUniversidad Nacional de Colombia
dc.publisherBogotá - Ciencias - Maestría en Física Médica
dc.publisherDepartamento de Física
dc.publisherFacultad de Ciencias
dc.publisherBogotá, Colombia
dc.publisherUniversidad Nacional de Colombia - Sede Bogotá
dc.relationRedCol
dc.relationLaReferencia
dc.relationHelber Cortés. Implementación de un Dosímetro en Gel para Verificación Dosimétrica de Tratamientos con RapidArcTM. Tesis de maestría en física médica, Universidad Nacional de Colombia, 2014.
dc.relationAndrea et al. 2d dose distribution images of a hybrid low field mri-gamma detector. AIP Conference Proceedings, (1753) 080012:1–5, 2016.
dc.relationAndrea Abril. MRI-gamma Detector Hybrid System. Tesis de Doctorado, Universidad Nacional de Colombia, 2017.
dc.relationPedro Dorado. Dosis de radiación. Consejo de Seguridad Nacional, SDB 0407:1–15, 2010.
dc.relationC. Baldock. Polymer gel dosimetry. Institute of Physics and Engineering in Medicine, 55:1–86, 2010.
dc.relationY Deene. A basic study of some normoxic polymer gel dosimeters. Physics in Medicine and Biology, 47:3441–3463, 2002.
dc.relationAndrea Espinosa. Dosimetría en gel por imágenes de resonancia magnética. Trabajo Final de Maestría en Física Médica, Bogotá, 2019.
dc.relationM.G. Stabin. Radiation dosimetry in nuclear medicine. Applied Radiation and Isotopes, 50:73–87, 1999.
dc.relationHS1 et al. Yoon. Initial results of simultaneous pet/mri experiments with an mri compatible silicon photomultiplier pet scanner. Journal of Nuclear Medicine, 53:608– 614, 2012.
dc.relationThomas Beyer. Mr/pet hybrid imaging for the next decade. Magnetom Flash, Siemens:19–29, 2010.
dc.relationSimon Cherry. The integration of positron emission tomography with magnetic resonance imaging. Proceedings of the IEEE, 96:416–438, 2008.
dc.relationThomas Yankeelov. Simultaneous pet-mri in oncology: a solution looking for a problem? Magnetic Resonance Imaging, 30:1342–1356, 2012.
dc.relationChristian Goetz. Spect low-field mri system for small-animal imaging. The Journal of Nuclear Medicine, 49:88–93, 2008.
dc.relationA. Boni. A polyacrylamide gamma dosimeter. Radiation Research Society, 14:374–380, 1961.
dc.relationJ. Pavoni. What happens when spins meet for ionizing radiation dosimetry? American Institute of Physics, 1753:080023(1–6), 2016.
dc.relationB. Farhood. Dosimetric characteristics of passag as a new polymer gel dosimeter with negligible toxicity. Radiation Physics and Chemistry, 147:91–100, 2018.
dc.relationAmerican Association of Physicists in Medicine. Acceptance testing and quality assurance procedures for magnetic resonance imaging facilities. AAPM report, 100:1–6, 2010.
dc.relationScott Bagwell et al. A linearised hp -finite element framework for acousto- magnetomechanical coupling in axisymmetric mri scanners. International Journal for Numerical Methods in Engineering, 112(10):1, 2017.
dc.relationChristakis Constantinides. Magnetic Resonance Imaging. Taylor and Francis Group, Boca Raton, 2014.
dc.relationGeneral Electric Healthcare. Signa explorer technical data. General Electric Company, 1:1–28, 2014.
dc.relationMarinus Vlaardingerbroek. Magnetic Resonance Imaging. Springer, Berlin-Heidelberg, 2003.
dc.relationAndrew Webb. Magnetic Resonance Technology. Royal Society of Chemistry, Cambridge, 2013.
dc.relationEloy Calvo. Resonancia Magnética para Técnicos. Independently Published, España, 2014.
dc.relationMalcolm H. Levitt. Basics of nuclear magnetic resonance, 2008.
dc.relationCarlos Rodrigues. NMR of liquid Crystal Dendrimers. Pan Stanford Publishing, Singapore, 2017.
dc.relationLuis Caro. Principios básicos de resonancia nuclear magnética. Morfolia, Universidad Nacional de Colombia, 1:26–33, 1991.
dc.relationMiroslava Cuperlovic. Experimental methodology. NMR Metabolomics in Cancer Research, 3:139–213, 2013.
dc.relationKumar Anil. Nmr fourier zeugmatography. Journal of Magnetic Resonance, 18:69–83, 1975.
dc.relationVadim Kuperman. Magnetic Resonance Imaging. Academic Press, San Diego, 2005.
dc.relationAlfred Horowitz. MRI Physics for Radiologists. Springer Verlag, Nueva York, 1992.
dc.relationWilliam Oldendorf. Basics of Magnetic Resonance Imaging. Martinus Nijhoff Publishing, Boston, 1988.
dc.relationY Deene. Essential characteristics of polymer gel dosimeters. Journal of Physics, Conf. Ser. 3 34:34–57, 2004.
dc.relationDeene et al. Y. De. Mathematical analysis and experimental investigation of noise in quantitative magnetic resonance imaging applied in polymer gel dosimetry. Signal processing, 70:85–101, 1998.
dc.relationShankar Vallabhajosula. Molecular Imaging. Springer, Heidelberg, 2009.
dc.relationJhon Prince. Comments on equilibrium, transient equilibrium, and secular equilibrium in serial radioactive decay. Journal of Nuclear Medicine, 20:162–164, 1979.
dc.relationPeter F. Sharp. Practical Nuclear Medicine. Springer–Verlag,3rd edition, London, 2005.
dc.relationBianca Costa. Technetium-99m metastable radiochemistry for pharmaceutical applications: old chemistry for new products. JOURNAL OF COORDINATION CHEMISTRY, 72:1–24, 2019.
dc.relationPillai Mra et al. Sustained availability of tc-99m: Possible paths forward. Journal of Nuclear Medicine, 54(2):1, 2012.
dc.relationEsam Hussein. Radiation Mechanics principles and practice. Elsevier Science, Oxford, 2007.
dc.relationKenneth Krane. Introductory Nuclear Physics. John Wiley and Sons, USA, 1988.
dc.relationW. Heitler. The quantum theory of radiation. University press, Oxford, 1960.
dc.relationPaula Ramos. Estudio de Rayos X de la Evolución de Cáncer de Mama en un Modelo Murino. Universidad de los Andes, monografía, Bogotá, 2019.
dc.relationNIST. mass attenuation coefficients. National Institute of Standards and Technology, NIST database:1, 2022.
dc.relationNath et al. Ravinder. Dosimetry of interstitial brachytherapy sources: Recomendations of the aapm radiation therapy commitee task group 43. Medical Physics, 22:210–221, 1995.
dc.relationCheng B et al. Saw. Review of aapm task group 43 reccomendations of interstitial brachytherapy sources dosimetry. Medical Dosimetry, 23:259–263, 1998.
dc.relationJohn Bevelacqua. Contemporary Health Physics. Wiley-VCh Verlag, Weinheim, 2009.
dc.relationAAPM task group. Specification of Brachytherapy source strength. American Association of Physicist in Medicine, New York, 1987.
dc.relationJohn Taylor. An Introduction to Error Analysis: The Study of Uncertainties in Physical Measurements. University Science Books, Sausalito, 1997.
dc.relationBhisham Gupta. Statistics and probability with applications for engineers and scientists using minitab, R and JMP. John Wiley and Sons, USA, 2020.
dc.relationRoger Sapsford. Data Collection and Analysis. SAGE publications, London, 2006.
dc.relationCiro Ramirez. Estadística y muestreo. Ecoe ediciones, Bogotá, 2008.
dc.relationAlvaro Tucci. Radiodiagnostico y radioterapia. Lulu, United Kingdom, 2012.
dc.rightsReconocimiento 4.0 Internacional
dc.rightshttp://creativecommons.org/licenses/by/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.titleDistribución de dosis de radiación gamma en gel radiosensible a través de imágenes de resonancia magnética nuclear
dc.typeTrabajo de grado - Maestría


Este ítem pertenece a la siguiente institución