dc.contributor | Castaño Marín, Angela María | |
dc.contributor | Moreno Fonseca, Liz Patricia | |
dc.contributor | Sistemas Agrícolas del Trópico (SAT) | |
dc.creator | Silva Arero, Elías Alexander | |
dc.date.accessioned | 2022-10-28T13:32:27Z | |
dc.date.accessioned | 2023-06-06T22:34:02Z | |
dc.date.available | 2022-10-28T13:32:27Z | |
dc.date.available | 2023-06-06T22:34:02Z | |
dc.date.created | 2022-10-28T13:32:27Z | |
dc.date.issued | 2022-10-27 | |
dc.identifier | https://repositorio.unal.edu.co/handle/unal/82527 | |
dc.identifier | Universidad Nacional de Colombia | |
dc.identifier | Repositorio Institucional Universidad Nacional de Colombia | |
dc.identifier | https://repositorio.unal.edu.co/ | |
dc.identifier.uri | https://repositorioslatinoamericanos.uchile.cl/handle/2250/6650763 | |
dc.description.abstract | La sequía es uno de los factores ambientales que más limita el crecimiento de las plantas y se prevé que el cambio climático reduzca la disponibilidad de agua en varias zonas productivas. En esta investigación se caracterizó el efecto de la severidad del estrés hídrico en la recuperación, respuesta bioquímica, expresión de proteínas y rendimiento por tamaño de tubérculos en dos etapas de desarrollo de la papa var. Diacol Capiro (DC). Plantas de papa en etapa de diferenciación de tubérculos (DT) y máxima tuberización (MT) se les suspendió el riego hasta alcanzar estrés hídrico Leve (EL), Moderado (EM) y Severo (ES); además se contó con plantas control bien regadas (BR). Cuando las plantas alcanzaron cada nivel de estrés y luego de 24 horas de restablecer el riego (rehidratación), se midió la actividad de enzimas antioxidantes del ciclo Ascorbato-Glutatión y la concentración de pigmentos fotosintéticos, prolina, malondialdehído (MDA), flavonoides y almidón. En los tres niveles de estrés hídrico, tanto en MT como en DT se determinó concentración de nutrientes en savia y en tejido foliar, y en DT se determinaron los perfiles proteómicos y se identificaron las proteínas que presentaron mayor correlación con el potencial hídrico. Se encontró que la planta de papa var. DC durante ES incrementa en hoja la actividad de enzimas antioxidantes y la concentración de MDA, carotenoides, prolina y almidón, como una respuesta para proteger el aparato fotosintético. La capacidad de recuperación bioquímica de la planta fue mayor en MT que en DT, debido a la menor duración del estrés en MT (7 días) en comparación con DT (21 días). En la savia de la hoja se incrementó la concentración de K+ y NO3- en plantas con estrés hídrico en comparación con BR, lo que se asoció a procesos de ajuste osmótico. En tejido foliar se observó un incrementó en la concentración de N en plantas con estrés con respecto a plantas bien regadas y estuvo relacionado con la concentración de clorofilas, carotenoides y actividad de enzimas antioxidantes. El ES redujo el número y peso de tubérculos grandes y aumentó el de tubérculos pequeños. Finalmente se encontró que las proteínas Rubisco activasa, la subunidad IV B del centro de reacción del PSI y proteína estabilizadora de manganeso incrementaron con la severidad del estrés, mientras que las tres posibles isoformas de la subunidad I de Citrocromo oxidadasa (RY290, RY289 y RY285) se redujeron. Nuestros resultados brindan un entendimiento detallado de las respuestas bioquímicas y la reducción del rendimiento por tamaño de tubérculo en plantas de papa a medida que se incrementa la severidad del estrés hídrico. (Texto tomado de la fuente). | |
dc.description.abstract | Drought is one of the environmental factors that most limits plant growth and climate change is expected to reduce water availability in several productive areas. In this research, the effect of the severity of water stress on the biochemical response, protein expression and yield by tuber size in two stages of development of potato var. Diacol Capiro (DC). Potato plants in the stage of tuber differentiation (DT) and maximum tuberization (MT) were suspended from irrigation until they reached Mild (EL), Moderate (EM) and Severe (ES) water stress; In addition, there were well-watered control plants (BR). When the plants reached each stress level and after 24 hour of restoring irrigation (rehydration), the activity of antioxidant enzymes of the Ascorbate-Glutathione cycle and the concentration of photosynthetic pigments, proline, malondialdehyde (MDA), flavonoids and starch were measured. In the three levels of water stress, both in MT and in DT, the concentration of nutrients in sap and leaf tissue is prolonged, and in DT the proteomic profiles were determined and the proteins that appeared greater conformation with the water potential were identified. It was found that the potato plant var. DC during ES increases the activity of antioxidant enzymes and the concentration of MDA, carotenoids, proline, and starch in the leaf, as a response to protect the photosynthetic apparatus. The biochemical recovery capacity of the plant was higher in MT than in DT, due to the shorter duration of stress in MT (7 days) compared to DT (21 days). In the leaf sap, the concentration of K+ and NO3- increased in plants with water stress compared to BR, which was associated with osmotic adjustment processes. In leaf tissue, an increase in N concentration was decreased in stressed plants with respect to BR and was related to the concentration of chlorophylls, carotenoids, and antioxidant enzyme activity. ES reduced the number and yield of large tubers and increased that of small tubers. Finally, it was found that the proteins Rubisco activase, subunit IV B of the PSI reaction center and manganese stabilizer protein increased with the severity of stress, while the three possible isoforms of subunit I of Cytrochrome oxidadase (RY290, RY289 and RY285) is reduced. Our results provide a detailed understanding of the biochemical responses and yield reduction per tuber size in potato plants as the severity of water stress increases. | |
dc.language | spa | |
dc.publisher | Universidad Nacional de Colombia | |
dc.publisher | Bogotá - Ciencias Agrarias - Maestría en Ciencias Agrarias | |
dc.publisher | Facultad de Ciencias Agrarias | |
dc.publisher | Bogotá, Colombia | |
dc.publisher | Universidad Nacional de Colombia - Sede Bogotá | |
dc.relation | Agrosavia | |
dc.relation | Abelenda, J. A., Bergonzi, S., Oortwijn, M., Sonnewald, S., Du, M., Visser, R. G. F., Sonnewald, U., & Bachem, C. W. B. (2019). Source-Sink Regulation Is Mediated by Interaction of an FT Homolog with a SWEET Protein in Potato. Current Biology, 29(7), 1178-1186.e6. https://doi.org/10.1016/J.CUB.2019.02.018 | |
dc.relation | AGRONET. (2020). Área, Producción y Rendimiento Papa. https://www.agronet.gov.co/estadistica/Paginas/home.aspx?cod=1 | |
dc.relation | AGROSAVIA. (2022). Biochemical, physiological and molecular characterization of potato plants subjected to water stress. [Unpublished manuscript]. | |
dc.relation | Ahmad, N., Malagoli, M., Wirtz, M., & Hell, R. (2016). Drought stress in maize causes differential acclimation responses of glutathione and sulfur metabolism in leaves and roots. BMC Plant Biology, 16(1), 1–15. https://doi.org/10.1186/S12870-016-0940-Z/FIGURES/8 | |
dc.relation | Ahmad Waraich, E., Ahmad, R., & Ashraf, M. Y. (2011). Role of mineral nutrition in alleviation of drought stress in plants. AJCS, 5(6), 764–777. | |
dc.relation | Alhoshan, M., Zahedi, M., Ramin, A. A., & Sabzalian, M. R. (2019). Effect of Soil Drought on Biomass Production, Physiological Attributes and Antioxidant Enzymes Activities of Potato Cultivars. Russian Journal of Plant Physiology, 66(2), 265–277. https://doi.org/10.1134/S1021443719020031/FIGURES/7 | |
dc.relation | Aliche, E. B., Theeuwen, T. P. J. M., Oortwijn, M., Visser, R. G. F., & van der Linden, C. G. (2020). Carbon partitioning mechanisms in POTATO under drought stress. Plant Physiology and Biochemistry, 146, 211–219. https://doi.org/10.1016/J.PLAPHY.2019.11.019 | |
dc.relation | Anand Gururani, M., Venkatesh, J., Phan Tran, L.-S., & L-sp, T. (2015). Regulation of Photosynthesis during Abiotic Stress-Induced Photoinhibition. Mol. Plant, 8, 1304–1320. https://doi.org/10.1016/j.molp.2015.05.005 | |
dc.relation | Anithakumari, A. M., Nataraja, K. N., Visser, R. G. F., & van der Linden, C. G. (2012). Genetic dissection of drought tolerance and recovery potential by quantitative trait locus mapping of a diploid potato population. Molecular Breeding, 30(3), 1413–1429. https://doi.org/10.1007/S11032-012-9728-5/TABLES/3 | |
dc.relation | Ariza, W., Rodríguez, L. E., Moreno-Echeverry, D., Guerrero, C. A., Moreno, L. P., Ariza, W., Rodríguez, L. E., Moreno-Echeverry, D., Guerrero, C. A., & Moreno, L. P. (2020). Effect of water deficit on some physiological and biochemical responses of the yellow diploid potato (Solanum tuberosum L. Group Phureja). Agronomía Colombiana, 38(1), 36–44. https://doi.org/10.15446/AGRON.COLOMB.V38N1.78982 | |
dc.relation | Bartoli, C. G., Buet, A., Grozeff, G. G., Galatro, A., Simontacchi, M., Bartoli, C. G., Buet, A., Gergoff Grozeff, · G, Simontacchi, · M, & Galatro, A. (2017). Ascorbate-Glutathione Cycle and Abiotic Stress Tolerance in Plants. Ascorbic Acid in Plant Growth, Development and Stress Tolerance, 177–200. https://doi.org/10.1007/978-3-319-74057-7_7 | |
dc.relation | Bates, L. S., Waldren, R. P., & Teare, I. D. (1973). Rapid determination of free proline for water-stress studies. Plant and Soil 1973 39:1, 39(1), 205–207. https://doi.org/10.1007/BF00018060 | |
dc.relation | Batool, T., Ali, S., Seleiman, M. F., Naveed, N. H., Ali, A., Ahmed, K., Abid, M., Rizwan, M., Shahid, M. R., Alotaibi, M., Al-Ashkar, I., & Mubushar, M. (2020). Plant growth promoting rhizobacteria alleviates drought stress in potato in response to suppressive oxidative stress and antioxidant enzymes activities. Scientific Reports 2020 10:1, 10(1), 1–19. https://doi.org/10.1038/s41598-020-73489-z | |
dc.relation | Beals, K. A. (2019). Potatoes, Nutrition and Health. American Journal of Potato Research, 96(2), 102–110. https://doi.org/10.1007/S12230-018-09705-4/TABLES/2 | |
dc.relation | Bista, D. R., Heckathorn, S. A., Jayawardena, D. M., Mishra, S., & Boldt, J. K. (2018). Effects of Drought on Nutrient Uptake and the Levels of Nutrient-Uptake Proteins in Roots of Drought-Sensitive and -Tolerant Grasses. Plants, 7(2). https://doi.org/10.3390/PLANTS7020028 | |
dc.relation | Boguszewska-Mańkowska, D., Gietler, M., & Nykiel, M. (2020). Comparative proteomic analysis of drought and high temperature response in roots of two potato cultivars. Plant Growth Regulation, 92(2), 345–363. https://doi.org/10.1007/S10725-020-00643-Y/FIGURES/7 | |
dc.relation | Bündig, C., Jozefowicz, A. M., Mock, H. P., & Winkelmann, T. (2016). Proteomic analysis of two divergently responding potato genotypes (Solanum tuberosum L.) following osmotic stress treatment in vitro. Journal of Proteomics, 143, 227–241. https://doi.org/10.1016/J.JPROT.2016.04.048 | |
dc.relation | Bündig, C., Vu, T. H., Meise, P., Seddig, S., Schum, A., & Winkelmann, T. (2017). Variability in Osmotic Stress Tolerance of Starch Potato Genotypes (Solanum tuberosum L.) as Revealed by an In Vitro Screening: Role of Proline, Osmotic Adjustment and Drought Response in Pot Trials. Journal of Agronomy and Crop Science, 203(3), 206–218. https://doi.org/10.1111/JAC.12186 | |
dc.relation | Cavagnaro, J. B., de Lis, B. R., & Tizio, R. M. (1971). Drought hardening of the potato plant as an after-effect of soil drought conditions at planting. Potato Research 1971 14:3, 14(3), 181–192. https://doi.org/10.1007/BF02361832 | |
dc.relation | Chen, Y., Wang, X. M., Zhou, L., He, Y., Wang, D., Qi, Y. H., & Jiang, D. A. (2015). Rubisco Activase Is Also a Multiple Responder to Abiotic Stresses in Rice. PLoS ONE, 10(10). https://doi.org/10.1371/JOURNAL.PONE.0140934 | |
dc.relation | Choudhury, F. K., Rivero, R. M., Blumwald, E., & Mittler, R. (2017). Reactive oxygen species, abiotic stress and stress combination. The Plant Journal, 90(5), 856–867. https://doi.org/10.1111/TPJ.13299 | |
dc.relation | Cruz De Carvalho, M. H. (2008). Drought stress and reactive oxygen species: Production, scavenging and signaling. Plant Signaling & Behavior, 3(3), 156. https://doi.org/10.4161/PSB.3.3.5536 | |
dc.relation | da Silva, E. C., Nogueira, R. J., da Silva, M. A., & de Albuquerque, M. B. (2011). Drought Stress and Plant Nutrition. 5, 32–41. http://globalsciencebooks.info/Online/GSBOnline/images/2011/PS_5SI1/PS_5(SI1)32-41o.pdf | |
dc.relation | Dahal, K., Li, X. Q., Tai, H., Creelman, A., & Bizimungu, B. (2019). Improving potato stress tolerance and tuber yield under a climate change scenario – a current overview. Frontiers in Plant Science, 10, 563. https://doi.org/10.3389/FPLS.2019.00563/BIBTEX | |
dc.relation | Dall’Osto, L., Piques, M., Ronzani, M., Molesini, B., Alboresi, A., Cazzaniga, S., & Bassia, R. (2013). The Arabidopsis nox Mutant Lacking Carotene Hydroxylase Activity Reveals a Critical Role for Xanthophylls in Photosystem I Biogenesis. The Plant Cell, 25(2), 591–608. https://doi.org/10.1105/TPC.112.108621 | |
dc.relation | Diaz-Valencia, P., Melgarejo, L. M., Arcila, I., & Mosquera-Vásquez, T. (2021). Physiological, biochemical and yield-component responses of solanum tuberosum L. Group phureja genotypes to a water deficit. Plants, 10(4). https://doi.org/10.3390/PLANTS10040638/S1 | |
dc.relation | Diaz-Vivancos, P., de Simone, A., Kiddle, G., & Foyer, C. H. (2015). Glutathione – linking cell proliferation to oxidative stress. Free Radical Biology and Medicine, 89, 1154–1164. https://doi.org/10.1016/J.FREERADBIOMED.2015.09.023 | |
dc.relation | Dinakar, C., Vishwakarma, A., Raghavendra, A. S., & Padmasree, K. (2016). Alternative oxidase pathway optimizes photosynthesis during osmotic and temperature stress by regulating cellular ros, malate valve and antioxidative systems. Frontiers in Plant Science, 7(FEB2016), 68. https://doi.org/10.3389/FPLS.2016.00068/BIBTEX | |
dc.relation | Ding, L., Lu, Z., Gao, L., Guo, S., & Shen, Q. (2018). Is nitrogen a key determinant of water transport and photosynthesis in higher plants upon drought stress? Frontiers in Plant Science, 9, 1143. https://doi.org/10.3389/FPLS.2018.01143/BIBTEX | |
dc.relation | Eltayeb, A., Yamamoto, S., Habora, M., Matsukubo, Y., Aono, M., Tsujimoto, H., & Tanaka, K. (2010). Greater protection against oxidative damages imposed by various environmental stresses in transgenic potato with higher level of reduced glutathione. Breeding Science, 6(2), 101–109. https://www.jstage.jst.go.jp/article/jsbbs/60/2/60_2_101/_article/-char/ja/ | |
dc.relation | Evers, D., Lefvre, I., Legay, S., Lamoureux, D., Hausman, J. F., Rosales, R. O. G., Marca, L. R. T., Hoffmann, L., Bonierbale, M., & Schafleitner, R. (2010). Identification of drought-responsive compounds in potato through a combined transcriptomic and targeted metabolite approach. Journal of Experimental Botany, 61(9), 2327–2343. https://doi.org/10.1093/JXB/ERQ060 | |
dc.relation | FAO. (2019). FAOSTAT. https://www.fao.org/faostat/en/#data/QC | |
dc.relation | Farhad, M.-S., Mandoulakani Babak, A., Mohammad Reza, Z., Mir Hassan, R.-S., & Afshin, T. (2011). Response of proline, soluble sugars, photosynthetic pigments and antioxidant enzymes in potato (Solanum tuberosum L.) to different irrigation regimes in greenhouse condition. AJCS, 5(1), 55–60. | |
dc.relation | Farooq, M., Wahid, A., Kobayashi, N., Fujita, D., & Basra, S. M. A. (2009). Plant drought stress: effects, mechanisms and management. Agronomy for Sustainable Development 2009 29:1, 29(1), 185–212. https://doi.org/10.1051/AGRO:2008021 | |
dc.relation | Fathi, E., & Allah, A. (2016). Plant growth under drought stress: Significance of mineral nutrients. https://doi.org/10.1002/9781119054450.ch37 | |
dc.relation | FEDEPAPA. (2020). BOLETIN REGIONAL. 4(5), 1–6. https://fedepapa.com/wp-content/uploads/2021/09/NACIONAL-2020.pdf | |
dc.relation | Fini, A., Brunetti, C., Ferdinando, M. di, Ferrini, F., & Tattini, M. (2011). Stress-induced flavonoid biosynthesis and the antioxidant machinery of plants. Plant Signaling & Behavior, 6(5), 709. https://doi.org/10.4161/PSB.6.5.15069 | |
dc.relation | Flecken, M., Wang, H., Popilka, L., Hartl, F. U., Bracher, A., & Hayer-Hartl, M. (2020). Dual Functions of a Rubisco Activase in Metabolic Repair and Recruitment to Carboxysomes. Cell, 183(2), 457-473.e20. https://doi.org/10.1016/J.CELL.2020.09.010 | |
dc.relation | Gabriel, J., Veramendi, S., Angulo, A., & Magne, J. (2013). Respuesta de variedades mejoradas de papa (Solanum tuberosum L.) al estrés hídrico por sequía. Journal of the Selva Andina Biosphere, 33–44. http://www.scielo.org.bo/pdf/jsab/v1n1/v1n1_a04.pdf | |
dc.relation | Gavicho Uarrota, V., Luis Vieira Stefen, D., Santini Leolato, L., Medeiros Gindri, D., Nerling, D., Uarrota, V. G., M Gindri Á D Nerling, Á. D., Uarrota Á D L V Stefen Á L S Leolato, V. G., & Gindri, D. M. (2018). Revisiting Carotenoids and Their Role in Plant Stress Responses: From Biosynthesis to Plant Signaling Mechanisms During Stress. Antioxidants and Antioxidant Enzymes in Higher Plants, 207–232. https://doi.org/10.1007/978-3-319-75088-0_10 | |
dc.relation | Gervais, T., Creelman, A., Li, X. Q., Bizimungu, B., de Koeyer, D., & Dahal, K. (2021). Potato Response to Drought Stress: Physiological and Growth Basis. Frontiers in Plant Science, 12, 1630. https://doi.org/10.3389/FPLS.2021.698060/BIBTEX | |
dc.relation | Ghaffari, H., Tadayon, M. R., Nadeem, M., Cheema, M., & Razmjoo, J. (2019). Proline-mediated changes in antioxidant enzymatic activities and the physiology of sugar beet under drought stress. Acta Physiologiae Plantarum, 41(2), 1–13. https://doi.org/10.1007/S11738-019-2815-Z/FIGURES/1 | |
dc.relation | Gimeno, V., Díaz-López, L., Simón-Grao, S., Martínez, V., Martínez-Nicolás, J. J., & García-Sánchez, F. (2014). Foliar potassium nitrate application improves the tolerance of Citrus macrophylla L. seedlings to drought conditions. Plant Physiology and Biochemistry, 83, 308–315. https://doi.org/10.1016/J.PLAPHY.2014.08.008 | |
dc.relation | Gómez, M. I., Barragán, A., Magnitskiy, S., & Rodríguez, L. E. (2020). Normalized difference vegetation index, N–NO−3 and K+ in stem sap of potato plants (Group Andigenum) as affected by fertilization - Corrigendum. Experimental Agriculture, 56(1), 159–159. https://doi.org/10.1017/S0014479719000176 | |
dc.relation | Gómez S., M. I., Magnitskiy, S., & Rodríguez, L. E. (2017). Diagnóstico de K + y NO 3 - en savia para determinar el estado nutricional en papa ( Solanum tuberosum L. subsp. andigena ). Revista Colombiana de Ciencias Hortícolas, 11(1), 133–142. https://doi.org/10.17584/RCCH.2017V11I1.6132 | |
dc.relation | Gray, S. B., & Brady, S. M. (2016). Plant developmental responses to climate change. Developmental Biology, 419(1), 64–77. https://doi.org/10.1016/J.YDBIO.2016.07.023 | |
dc.relation | Hasanuzzaman, M., Nahar, K., Anee, T. I., & Fujita, M. (2017). Glutathione in plants: biosynthesis and physiological role in environmental stress tolerance. Physiology and Molecular Biology of Plants, 23(2), 249. https://doi.org/10.1007/S12298-017-0422-2 | |
dc.relation | Havaux, M. (2014). Carotenoid oxidation products as stress signals in plants. The Plant Journal, 79(4), 597–606. https://doi.org/10.1111/TPJ.12386 | |
dc.relation | He, M., & Dijkstra, F. A. (2014). Drought effect on plant nitrogen and phosphorus: a meta-analysis. New Phytologist, 204(4), 924–931. https://doi.org/10.1111/NPH.12952 | |
dc.relation | Heath, R. L., & Packer, L. (1968). Photoperoxidation in isolated chloroplasts. I. Kinetics and stoichiometry of fatty acid peroxidation. Archives of Biochemistry and Biophysics, 125(1), 189–198. https://doi.org/10.1016/0003-9861(68)90654-1 | |
dc.relation | Hernández, I., & Munné-Bosch, S. (2015). Linking phosphorus availability with photo-oxidative stress in plants. Journal of Experimental Botany, 66(10), 2889–2900. https://doi.org/10.1093/JXB/ERV056 | |
dc.relation | Hessini, K., Martínez, J. P., Gandour, M., Albouchi, A., Soltani, A., & Abdelly, C. (2009). Effect of water stress on growth, osmotic adjustment, cell wall elasticity and water-use efficiency in Spartina alterniflora. Environmental and Experimental Botany, 67(2), 312–319. https://doi.org/10.1016/J.ENVEXPBOT.2009.06.010 | |
dc.relation | Hijmans, R. J. (2003). The effect of climate change on global potato production. American Journal of Potato Research 2003 80:4, 80(4), 271–279. https://doi.org/10.1007/BF02855363 | |
dc.relation | Hmidi, D., Abdelly, C., Athar, H. ur R., Ashraf, M., & Messedi, D. (2018). Effect of salinity on osmotic adjustment, proline accumulation and possible role of ornithine-δ-aminotransferase in proline biosynthesis in Cakile maritima. Physiology and Molecular Biology of Plants, 24(6), 1017. https://doi.org/10.1007/S12298-018-0601-9 | |
dc.relation | Hörtensteiner, S., & Kräutler, B. (2011). Chlorophyll breakdown in higher plants. Biochimica et Biophysica Acta (BBA) - Bioenergetics, 1807(8), 977–988. https://doi.org/10.1016/J.BBABIO.2010.12.007 | |
dc.relation | Hosseini, S. A., Réthoré, E., Pluchon, S., Ali, N., Billiot, B., & Yvin, J. C. (2019). Calcium Application Enhances Drought Stress Tolerance in Sugar Beet and Promotes Plant Biomass and Beetroot Sucrose Concentration. International Journal of Molecular Sciences, 20(15). https://doi.org/10.3390/IJMS20153777 | |
dc.relation | Huang, H., Ullah, F., Zhou, D. X., Yi, M., & Zhao, Y. (2019). Mechanisms of ROS regulation of plant development and stress responses. Frontiers in Plant Science, 10, 800. https://doi.org/10.3389/FPLS.2019.00800/BIBTEX | |
dc.relation | Hurtado, F. A., & Mesa, Ó. J. (2015). Cambio climático y variabilidad espacio – temporal de la precipitación en Colombia. Rev.EIA, 12(24), 133–150. https://doi.org/10.14508/reia.2015.12.24.131-150 | |
dc.relation | Janku, M., Luhová, L., & Petrivalský, M. (2019). On the Origin and Fate of Reactive Oxygen Species in Plant Cell Compartments. Antioxidants, 8(4). https://doi.org/10.3390/ANTIOX8040105 | |
dc.relation | Jefferies, R. A., & Mackerron, D. K. (1993). Responses of potato genotypes to drought. II. Leaf area index, growth and yield. Annals of Applied Biology, 122(1), 105–112. https://doi.org/10.1111/J.1744-7348.1993.TB04018.X | |
dc.relation | Khan, A., Pan, X., Najeeb, U., Tan, D. K. Y., Fahad, S., Zahoor, R., & Luo, H. (2018). Coping with drought: stress and adaptive mechanisms, and management through cultural and molecular alternatives in cotton as vital constituents for plant stress resilience and fitness. Biological Research 2018 51:1, 51(1), 1–17. https://doi.org/10.1186/S40659-018-0198-Z | |
dc.relation | Kleczkowski, L. A., & Igamberdiev, A. U. (2021). Magnesium Signaling in Plants. International Journal of Molecular Sciences 2021, Vol. 22, Page 1159, 22(3), 1159. https://doi.org/10.3390/IJMS22031159 | |
dc.relation | Kopsell, D. A., Kopsell, D. E., & Curran-Celentano, J. (2007). Carotenoid pigments in kale are influenced by nitrogen concentration and form. Journal of the Science of Food and Agriculture, 87(5), 900–907. https://doi.org/10.1002/JSFA.2807 | |
dc.relation | Kumar, S., Sachdeva, S., Bhat, K. v., & Vats, S. (2018). Plant Responses to Drought Stress: Physiological, Biochemical and Molecular Basis. Biotic and Abiotic Stress Tolerance in Plants, 1–25. https://doi.org/10.1007/978-981-10-9029-5_1 | |
dc.relation | Kumar, Shankar, V., & Poddar, A. (2020). Investigating the effect of limited climatic data on evapotranspiration-based numerical modeling of soil moisture dynamics in the unsaturated root zone: a case study for potato crop. Modeling Earth Systems and Environment, 6(4), 2433–2449. https://doi.org/10.1007/S40808-020-00824-8/TABLES/9 | |
dc.relation | Lahlou, O., Ouattar, S., & Ledent, J.-F. (2003). The effect of drought and cultivar on growth parameters, yield and yield components of potato. Agronomie, EDP Sciences, 23(3), 257–268. https://doi.org/10.1051/agro:2002089ï | |
dc.relation | Lee, B. R., Zaman, R., Avice, J. C., Ourry, A., & Kim, T. H. (2016). Sulfur use efficiency is a significant determinant of drought stress tolerance in relation to photosynthetic activity in Brassica napus cultivars. Frontiers in Plant Science, 7(APR2016), 459. https://doi.org/10.3389/FPLS.2016.00459/BIBTEX | |
dc.relation | Lefèvre, I., Ziebel, J., Guignard, C., Hausman, J. F., Gutiérrez Rosales, R. O., Bonierbale, M., Hoffmann, L., Schafleitner, R., & Evers, D. (2012). Drought Impacts Mineral Contents in Andean Potato Cultivars. Journal of Agronomy and Crop Science, 198(3), 196–206. https://doi.org/10.1111/J.1439-037X.2011.00499.X | |
dc.relation | Li, H., Luo, W., Ji, R., Xu, Y., Xu, G., Qiu, S., & Tang, H. (2021). A comparative proteomic study of cold responses in potato leaves. Heliyon, 7(2), e06002. https://doi.org/10.1016/J.HELIYON.2021.E06002 | |
dc.relation | Li, T., Liu, J. X., Deng, Y. J., Xu, Z. S., & Xiong, A. S. (2021). Overexpression of a carrot BCH gene, DcBCH1, improves tolerance to drought in Arabidopsis thaliana. BMC Plant Biology, 21(1), 1–13. https://doi.org/10.1186/S12870-021-03236-7/TABLES/1 | |
dc.relation | Lim, C. W., Baek, W., Jung, J., Kim, J. H., & Lee, S. C. (2015). Function of ABA in Stomatal Defense against Biotic and Drought Stresses. International Journal of Molecular Sciences, 16(7), 15251. https://doi.org/10.3390/IJMS160715251 | |
dc.relation | Liu, F., Jensen, C. R., Shahanzari, A., Andersen, M. N., & Jacobsen, S. E. (2005). ABA regulated stomatal control and photosynthetic water use efficiency of potato (Solanum tuberosum L.) during progressive soil drying. Plant Science, 168(3), 831–836. https://doi.org/10.1016/J.PLANTSCI.2004.10.016 | |
dc.relation | Liu., Shahnazari, A., Andersen, M., Jacobsen, S., & Jensen, C. (2006). Effects of deficit irrigation (DI) and partial root drying (PRD) on gas exchange, biomass partitioning, and water use efficiency in potato. Scientia Horticulturae, 109(2), 113–117. https://doi.org/10.1016/J.SCIENTA.2006.04.004 | |
dc.relation | Liu, Y., Lu, S., Liu, K., Wang, S., Huang, L., & Guo, L. (2019). Proteomics: a powerful tool to study plant responses to biotic stress. Plant Methods 2019 15:1, 15(1), 1–20. https://doi.org/10.1186/S13007-019-0515-8 | |
dc.relation | Liu, Y., Wang, L., Li, Y., Li, X., & Zhang, J. (2019). Proline metabolism-related gene expression in four potato genotypes in response to drought stress. Http://Bp.Ueb.Cas.Cz/Doi/10.32615/Bp.2019.153.Html, 63(1), 757–764. https://doi.org/10.32615/BP.2019.153 | |
dc.relation | López-Hidalgo, C., Meijón, M., Lamelas, L., & Valledor, L. (2021). The rainbow protocol: A sequential method for quantifying pigments, sugars, free amino acids, phenolics, flavonoids and MDA from a small amount of sample. Plant, Cell & Environment, 44(6), 1977–1986. https://doi.org/10.1111/PCE.14007 | |
dc.relation | Lou, L., Li, X., Chen, J., Li, Y., Tang, Y., & Lv, J. (2018). Photosynthetic and ascorbate-glutathione metabolism in the flag leaves as compared to spikes under drought stress of winter wheat (Triticum aestivum L.). PLOS ONE, 13(3), e0194625. https://doi.org/10.1371/JOURNAL.PONE.0194625 | |
dc.relation | Marschner, P. (2011). Marschner’s Mineral Nutrition of Higher Plants: Third Edition. Marschner’s Mineral Nutrition of Higher Plants: Third Edition, 1–651. https://doi.org/10.1016/C2009-0-63043-9 | |
dc.relation | Meena, M., Divyanshu, K., Kumar, S., Swapnil, P., Zehra, A., Shukla, V., Yadav, M., & Upadhyay, R. S. (2019). Regulation of L-proline biosynthesis, signal transduction, transport, accumulation and its vital role in plants during variable environmental conditions. Heliyon, 5(12). https://doi.org/10.1016/J.HELIYON.2019.E02952 | |
dc.relation | Mittler, R., & Blumwald, E. (2015). The Roles of ROS and ABA in Systemic Acquired Acclimation. The Plant Cell, 27(1), 64. https://doi.org/10.1105/TPC.114.133090 | |
dc.relation | Monneveux, P., Ramírez, D. A., & Pino, M. T. (2013). Drought tolerance in potato (S. tuberosum L.): Can we learn from drought tolerance research in cereals? Plant Science : An International Journal of Experimental Plant Biology, 205–206, 76–86. https://doi.org/10.1016/J.PLANTSCI.2013.01.011 | |
dc.relation | Morales, M., & Munné-Bosch, S. (2019). Malondialdehyde: Facts and Artifacts. Plant Physiology, 180(3), 1246. https://doi.org/10.1104/PP.19.00405 | |
dc.relation | Murshed, R., Lopez-Lauri, F., & Sallanon, H. (2008). Microplate quantification of enzymes of the plant ascorbate-glutathione cycle. Analytical Biochemistry, 383(2), 320–322. https://doi.org/10.1016/J.AB.2008.07.020 | |
dc.relation | Nasir, M. W., & Toth, Z. (2021). Response of Different Potato Genotypes to Drought Stress. Agriculture 2021, Vol. 11, Page 763, 11(8), 763. https://doi.org/10.3390/AGRICULTURE11080763 | |
dc.relation | Nasir, M. W., & Toth, Z. (2022). Effect of Drought Stress on Potato Production: A Review. Agronomy 2022, Vol. 12, Page 635, 12(3), 635. https://doi.org/10.3390/AGRONOMY12030635 | |
dc.relation | Noctor, G., Mhamdi, A., & Foyer, C. H. (2014). The Roles of Reactive Oxygen Metabolism in Drought: Not So Cut and Dried. Plant Physiology, 164(4), 1636–1648. https://doi.org/10.1104/PP.113.233478 | |
dc.relation | Obidiegwu, J. E., Bryan, G. J., Jones, H. G., & Prashar, A. (2015). Coping with drought: Stress and adaptive responses in potato and perspectives for improvement. Frontiers in Plant Science, 6(JULY), 1–23. https://doi.org/10.3389/FPLS.2015.00542/BIBTEX | |
dc.relation | Ozakca, D. U. (2013). Effect of Abiotic Stress on Photosystem I-Related Gene Transcription in Photosynthetic Organisms. Photosynthesis. https://doi.org/10.5772/55350 | |
dc.relation | Poddar A, Sharma A, & Shankar V. (2017). Irrigation Scheduling for Potato (Solanum Tuberosum L.) Based on Daily Crop Coefficient Approach in a Sub-Humid Sub-Tropical Region. https://www.researchgate.net/publication/327668299_Irrigation_Scheduling_for_Potato_Solanum_Tuberosum_L_Based_on_Daily_Crop_Coefficient_Approach_in_a_Sub-Humid_Sub-Tropical_Region/figures?lo=1 | |
dc.relation | Rahman, S. M. L., Mackay, W. A., Nawata, E., Sakuratani, T., Uddin, A. S. M. M., & Quebedeaux, B. (2004). Superoxide Dismutase and Stress Tolerance of Four Tomato Cultivars. HortScience, 39(5), 983–986. https://doi.org/10.21273/HORTSCI.39.5.983 | |
dc.relation | Razi, K., & Muneer, S. (2021). Drought stress-induced physiological mechanisms, signaling pathways and molecular response of chloroplasts in common vegetable crops. Https://Doi-Org.Ezproxy.Unal.Edu.Co/10.1080/07388551.2021.1874280, 41(5), 669–691. https://doi.org/10.1080/07388551.2021.1874280 | |
dc.relation | Ribas-Carbo, M., Taylor, N. L., Giles, L., Busquets, S., Finnegan, P. M., Day, D. A., Lambers, H., Medrano, H., Berry, J. A., & Flexas, J. (2005). Effects of water stress on respiration in soybean leaves. Plant Physiology, 139(1), 466–473. https://doi.org/10.1104/PP.105.065565 | |
dc.relation | Rodriguez-Heredia, M., Saccon, F., Wilson, S., Finazzi, G., Ruban, A. v, & Hanke, G. T. (2022). Protection of photosystem I during sudden light stress depends on ferredoxin:NADP(H) reductase abundance and interactions. Plant Physiology, 188(2), 1028–1042. https://doi.org/10.1093/PLPHYS/KIAB550 | |
dc.relation | Rodríguez-Pérez, L., Ñústez L, C. E., Moreno F, L. P., Rodríguez-Pérez, L., Ñústez L, C. E., & Moreno F, L. P. (2017). Drought stress affects physiological parameters but not tuber yield in three Andean potato (Solanum tuberosum L.) cultivars. Agronomía Colombiana, 35(2), 158–170. https://doi.org/10.15446/AGRON.COLOMB.V35N2.65901 | |
dc.relation | Romero, A. P., Alarcón, A., Valbuena, R. I., & Galeano, C. H. (2017). Physiological assessment of water stress in potato using spectral information. Frontiers in Plant Science, 8, 1608. https://doi.org/10.3389/FPLS.2017.01608/BIBTEX | |
dc.relation | Rudack, K., Seddig, S., Sprenger, H., Köhl, K., Uptmoor, R., & Ordon, F. (2017). Drought stress-induced changes in starch yield and physiological traits in potato. Journal of Agronomy and Crop Science, 203(6), 494–505. https://doi.org/10.1111/JAC.12224 | |
dc.relation | Sadras, V. O., & Milroy, S. P. (1996). Soil-water thresholds for the responses of leaf expansion and gas exchange: A review. Field Crops Research, 47(2–3), 253–266. https://doi.org/10.1016/0378-4290(96)00014-7 | |
dc.relation | Sah, S. K., Reddy, K. R., & Li, J. (2016). Abscisic acid and abiotic stress tolerance in crop plants. Frontiers in Plant Science, 7(MAY2016), 571. https://doi.org/10.3389/FPLS.2016.00571/BIBTEX | |
dc.relation | Sanders, G. J., & Arndt, S. K. (2012). Osmotic Adjustment Under Drought Conditions. Plant Responses to Drought Stress: From Morphological to Molecular Features, 9783642326530, 199–229. https://doi.org/10.1007/978-3-642-32653-0_8 | |
dc.relation | Sarker, U., & Oba, S. (2018). Catalase, superoxide dismutase and ascorbate-glutathione cycle enzymes confer drought tolerance of Amaranthus tricolor. Scientific Reports 2018 8:1, 8(1), 1–12. https://doi.org/10.1038/s41598-018-34944-0 | |
dc.relation | Seleiman, M. F., Al-Suhaibani, N., Ali, N., Akmal, M., Alotaibi, M., Refay, Y., Dindaroglu, T., Haleem Abdul-Wajid, H., & Leonardo Battaglia, M. (2021). plants Drought Stress Impacts on Plants and Different Approaches to Alleviate Its Adverse Effects. https://doi.org/10.3390/plants | |
dc.relation | Shah, A., & Smith, D. L. (2020). Flavonoids in Agriculture: Chemistry and Roles in, Biotic and Abiotic Stress Responses, and Microbial Associations. Agronomy 2020, Vol. 10, Page 1209, 10(8), 1209. https://doi.org/10.3390/AGRONOMY10081209 | |
dc.relation | Sharma, A., Kumar, V., Shahzad, B., Ramakrishnan, M., Singh Sidhu, G. P., Bali, A. S., Handa, N., Kapoor, D., Yadav, P., Khanna, K., Bakshi, P., Rehman, A., Kohli, S. K., Khan, E. A., Parihar, R. D., Yuan, H., Thukral, A. K., Bhardwaj, R., & Zheng, B. (2019). Photosynthetic Response of Plants Under Different Abiotic Stresses: A Review. Journal of Plant Growth Regulation 2019 39:2, 39(2), 509–531. https://doi.org/10.1007/S00344-019-10018-X | |
dc.relation | Sharma, Jha, A., Dubey, R., & Pessarakli, M. (2012). Reactive Oxygen Species, Oxidative Damage, and Antioxidative Defense Mechanism in Plants under Stressful Conditions. Journal of Botany, 2012, 1–26. https://doi.org/10.1155/2012/217037 | |
dc.relation | Singh, R., Parihar, P., Singh, S., Mishra, R. K., Singh, V. P., & Prasad, S. M. (2017). Reactive oxygen species signaling and stomatal movement: Current updates and future perspectives. Redox Biology, 11, 213. https://doi.org/10.1016/J.REDOX.2016.11.006 | |
dc.relation | Sprenger, H., Kurowsky, C., Horn, R., Erban, A., Seddig, S., Rudack, K., Fischer, A., Walther, D., Zuther, E., Köhl, K., Hincha, D. K., & Kopka, J. (2016). The drought response of potato reference cultivars with contrasting tolerance. https://doi.org/10.1111/pce.12780 | |
dc.relation | Svensson, B., Tiede, D. M., Nelson, D. R., & Barry, B. A. (2004). Structural Studies of the Manganese Stabilizing Subunit in Photosystem II. Biophysical Journal, 86(3), 1807–1812. https://doi.org/10.1016/S0006-3495(04)74247-2 | |
dc.relation | Tourneux, C., Devaux, A., Camacho, M. R., Mamani, P., & Ledent, J. F. (2003). Effect of water shortage on six potato genotypes in the highlands of Bolivia (II): water relations, physiological parameters. Agronomie, 23(2), 181–190. https://doi.org/10.1051/AGRO:2002080 | |
dc.relation | Turner, N. C. (2018). Turgor maintenance by osmotic adjustment: 40 years of progress. Journal of Experimental Botany, 69(13), 3223–3233. https://doi.org/10.1093/JXB/ERY181 | |
dc.relation | Valbuena, R., Roveda, G., Bolaños, A., Zapata, J., Medina, C., Almanza, P., & Porras, D. (2010). ESCALAS FENOLOGÍCAS DE LAS VARIEDADES DE PAPA PARDA PASTUSA, DIACOL CAPIRO Y CRIOLLA “YEMA DE HUEVO” EN LAS ZONAS PRODUCTORAS DE CUNDINAMARCA, BOYACA, NARIÑO Y ANTIOQUIA (Corpoica, Ed.). Produmedios. https://repository.agrosavia.co/bitstream/handle/20.500.12324/12893/44240_56518.pdf?sequence=1&isAllowed=y | |
dc.relation | van Loon, C. D. (1981). The effect of water stress on potato growth, development, and yield. American Potato Journal 1981 58:1, 58(1), 51–69. https://doi.org/10.1007/BF02855380 | |
dc.relation | Verslues, P. E., Agarwal, M., Katiyar-Agarwal, S., Zhu, J., & Zhu, J. K. (2006). Methods and concepts in quantifying resistance to drought, salt and freezing, abiotic stresses that affect plant water status. The Plant Journal : For Cell and Molecular Biology, 45(4), 523–539. https://doi.org/10.1111/J.1365-313X.2005.02593.X | |
dc.relation | Vishwakarma, A., Tetali, S. D., Selinski, J., Scheibe, R., & Padmasree, K. (2015). Importance of the alternative oxidase (AOX) pathway in regulating cellular redox and ROS homeostasis to optimize photosynthesis during restriction of the cytochrome oxidase pathway in Arabidopsis thaliana. Annals of Botany, 116(4), 555–569. https://doi.org/10.1093/AOB/MCV122 | |
dc.relation | Vos, J., & Groenwold, J. (1989). Characteristics of photosynthesis and conductance of potato canopies and the effects of cultivars and transient drought. Field Crops Research, 20(4), 237–250. https://doi.org/10.1016/0378-4290(89)90068-3 | |
dc.relation | Webster, J., & Oxley, D. (2012). Protein identification by MALDI-TOF mass spectrometry. Methods in Molecular Biology (Clifton, N.J.), 800, 227–240. https://doi.org/10.1007/978-1-61779-349-3_15 | |
dc.relation | Wheeler, T., & von Braun, J. (2013). Climate Change Impacts on Global Food Security. Science, 341(6145), 508–513. https://doi.org/10.1126/SCIENCE.1239402 | |
dc.relation | Wilcox, D. A., & Ashley, R. A. (1982). The potential use of plant physiological responses to water stress as an indication of varietal sensitivity to drought in four potato (Solanum tuberosum L.) varieties. American Potato Journal 1982 59:11, 59(11), 533–545. https://doi.org/10.1007/BF02852602 | |
dc.relation | Xiong, H., Hua, L., Reyna-Llorens, I., Shi, Y., Chen, K. M., Smirnoff, N., Kromdijk, J., & Hibberd, J. M. (2021). Photosynthesis-independent production of reactive oxygen species in the rice bundle sheath during high light is mediated by NADPH oxidase. Proceedings of the National Academy of Sciences of the United States of America, 118(25). https://doi.org/10.1073/PNAS.2022702118/SUPPL_FILE/PNAS.2022702118.SD04.XLSX | |
dc.relation | Yang, H., Zhang, D., Li, X., Li, H., Zhang, D., Lan, H., Wood, A. J., & Wang, J. (2016). Overexpression of ScALDH21 gene in cotton improves drought tolerance and growth in greenhouse and field conditions. Molecular Breeding 2016 36:3, 36(3), 1–13. https://doi.org/10.1007/S11032-015-0422-2 | |
dc.relation | Yang, X., Lu, M., Wang, Y., Wang, Y., Liu, Z., & Chen, S. (2021). Response Mechanism of Plants to Drought Stress. Horticulturae 2021, Vol. 7, Page 50, 7(3), 50. https://doi.org/10.3390/HORTICULTURAE7030050 | |
dc.relation | Ye, Y., Medina-Velo, I. A., Cota-Ruiz, K., Moreno-Olivas, F., & Gardea-Torresdey, J. L. (2019). Can abiotic stresses in plants be alleviated by manganese nanoparticles or compounds? Ecotoxicology and Environmental Safety, 184. https://doi.org/10.1016/J.ECOENV.2019.109671 | |
dc.relation | Yi, X., McChargue, M., Laborde, S., Frankel, L. K., & Bricker, T. M. (2005). The manganese-stabilizing protein is required for photosystem II assembly/stability and photoautotrophy in higher plants. The Journal of Biological Chemistry, 280(16), 16170–16174. https://doi.org/10.1074/JBC.M501550200 | |
dc.relation | Zarzyńska, K., Boguszewska-Mańkowska, D., & Nosalewicz, A. (2017). Differences in size and architecture of the potato cultivars root system and their tolerance to drought stress. Plant, Soil and Environment, 63 (2017)(No. 4), 159–164. https://doi.org/10.17221/4/2017-PSE | |
dc.relation | Zhang, H., Han, B., Wang, T., Chen, S., Li, H., Zhang, Y., & Dai, S. (2012). Mechanisms of plant salt response: Insights from proteomics. Journal of Proteome Research, 11(1), 49–67. https://doi.org/10.1021/PR200861W | |
dc.relation | Zhang, S. Han, Xu, X. Feng, Sun, Y. Min, Zhang, J. Lian, & Li, C. Zhou. (2018). Influence of drought hardening on the resistance physiology of potato seedlings under drought stress. Journal of Integrative Agriculture, 17(2), 336–347. https://doi.org/10.1016/S2095-3119(17)61758-1 | |
dc.relation | Zhang, Y. T., Zhou, D. Q., Su, Y., Yu, P., Zhou, X. G., & Yao, C. X. (2013). Proteome analysis of potato drought resistance variety in Ninglang 182 leaves under drough stress. Yi Chuan = Hereditas, 35(5), 666–672. https://doi.org/10.3724/SP.J.1005.2013.00666 | |
dc.relation | Zhang, Zhou, D., Su, Y., Yu, P., Zhou, X., & Yao, C. (2013). Proteome analysis of potato drought resistance variety in Ninglang 182 leaves under drough stress. Yi Chuan = Hereditas, 35(5), 666–672. https://doi.org/10.3724/SP.J.1005.2013.00666 | |
dc.relation | Živković, T., Quartacci, M. F., Stevanović, B., Marinone, F., & Navari-Izzo, F. (2005). Low-molecular weight substances in the poikilohydric plant Ramonda serbica during dehydration and rehydration. Plant Science, 168(1), 105–111. https://doi.org/10.1016/J.PLANTSCI.2004.07.018 | |
dc.rights | Atribución-NoComercial-SinDerivadas 4.0 Internacional | |
dc.rights | http://creativecommons.org/licenses/by-nc-nd/4.0/ | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.title | Efecto de la severidad del estrés hídrico en la recuperación, respuesta bioquímica, expresión de proteínas y rendimiento en papa (Solanum tuberosum L.) en dos estados de desarrollo | |
dc.type | Trabajo de grado - Maestría | |