dc.contributorMera Banguero, Carlos Andres
dc.contributorBranch Bedoya, John Willian
dc.contributorOrduz Peralta, Sergio
dc.contributorBiología Funcional
dc.contributorGidia: Grupo de Investigación YyDesarrollo en Inteligencia Artificial
dc.contributor0000-0002-5143-0276
dc.contributorhttps://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0001737101
dc.contributorhttps://scholar.google.com/citations?user=K6Tz_4QAAAAJ&hl=es
dc.creatorOrrego Pérez, Andrés
dc.date.accessioned2023-05-19T19:12:22Z
dc.date.available2023-05-19T19:12:22Z
dc.date.created2023-05-19T19:12:22Z
dc.date.issued2023
dc.identifierhttps://repositorio.unal.edu.co/handle/unal/83835
dc.identifierUniversidad Nacional de Colombia
dc.identifierRepositorio Institucional Universidad Nacional de Colombia
dc.identifierhttps://repositorio.unal.edu.co/
dc.description.abstractLa resistencia a los antibióticos se ha convertido en uno de los mayores problemas de salud a nivel mundial en los últimos años, provocando afectaciones directas contra la salud y la economía. Un tipo especial de proteínas cortas, denominadas péptidos antimicrobianos, está tomando gran relevancia en la investigación para combatir esta problemática, principalmente por sus bondades antibióticas. Existen diferentes métodos para la búsqueda de nuevos péptidos antimicrobianos, entre ellos está el uso de técnicas de aprendizaje automático que permiten reducir los costos y el tiempo de búsqueda, comparadas con las técnicas tradicionales de bioprospección. En esa línea, en este trabajo se propone un método para la generación de secuencias sintéticas de péptidos antimicrobianos con funcionalidades específicas utilizando una red neuronal con una arquitectura GAN condicional y celdas recurrentes. Este método es evaluado a partir de una estrategia de validación propuesta que se enfoca en medir la calidad y diversidad de las secuencias sintéticas generadas. Los modelos obtenidos fueron comparados con algunas referencias del estado del arte y los resultados mostraron que las secuencias generadas por los modelos propuestos tienen alto potencial antimicrobiano, son diversas, estructuralmente distintas a las secuencias de entrenamiento, pero similares a nivel de su composición de aminoácidos. Adicionalmente, los modelos propuestos pueden generar, a petición del usuario, secuencias con las siguientes funcionalidades específicas: antimicrobiano, antibacteriano, anti gramnegativo, anti grampositivo, antifúngico, antiviral, y anticáncer. (Tomado de la fuente)
dc.description.abstractAntibiotic resistance has become one of the biggest health problems worldwide in recent years, causing direct effects on health and the economy. A particular type of short protein, called antimicrobial peptides, is gaining great relevance in research to combat this problem, mainly due to its antibiotic benefits. There are different methods for searching for new antimicrobial peptide sequences, including machine learning techniques that reduce costs and search time compared to traditional bioprospecting techniques. In that line, this work proposes a method for generating synthetic sequences of antimicrobial peptides with specific functionalities using a neural network with a conditional GAN architecture and recurrent cells. This method is evaluated based on a proposed validation strategy that measures the quality and diversity of the generated synthetic sequences. The obtained models were compared with some state-of-the-art references. The results showed that the sequences generated by the proposed models have high antimicrobial potential and are diverse, structurally different from the training sequences, but similar at their amino acid composition level. Additionally, the proposed models can generate, at the user's request, sequences with the following specific functionalities: antimicrobial, antibacterial, anti-gram-negative, anti-gram-positive, antifungal, antiviral, and anticancer.
dc.languagespa
dc.publisherUniversidad Nacional de Colombia
dc.publisherMedellín - Minas - Maestría en Ingeniería - Analítica
dc.publisherFacultad de Minas
dc.publisherMedellín, Colombia
dc.publisherUniversidad Nacional de Colombia - Sede Medellín
dc.relationLaReferencia
dc.relationDR. Daza, “Resistencia bacteriana a antimicrobianos: su importancia en la toma de decisiones en la práctica diaria,” Inf ormaciónTerapeutica del Sistema Nacional de Salud, vol. 22, no. 3, 1998.
dc.relationF. Del Castillo Martin, “Neumococo resistente a la penicilina. Un grave problema de salud publica,” Anales Espanoles de Pediatria, vol. 45, no. 3. 1996.
dc.relationWorld Health Organization, “Resistencia a los antimicrobianos,” 2020. https://www.who.int/es/news-room/fact-sheets/detail/antimicrobial-resistance (accessed Dec. 20, 2021).
dc.relationJ. Oromí Durich, “Resistencia bacteriana a los antibióticos. Medicina Integral,” Medicina Integral, vol. 36, no. 10, 2000.
dc.relationInteragency Coordination Group on Antimicrobial Resistance, “No podemos esperar: asegurar el futuro contra las infecciones farmacorresistentes,” 2019.
dc.relationWorld Health Organization, “2019 Antibacterial agents in clinical development: an analysis of the antibacterial clinical development pipeline. Geneva: World Health Organization; 2019. Licence: CC BY-NC-SA 3.0 IGO.,” 2019.
dc.relationJ. O’Neill, “Antimicrobial Resistance : Tackling a crisis for the health and wealth of nations, Review on Antimicrobial Resistance, Chaired by Jim O’Neill, December 2014,” Review on Antimicrobial Resistance, no. December, 2016.
dc.relationWHO, “Proyecto de plan de acción mundial sobre la resistencia a los antimicrobianos. Informe de la Secretaría.,” Resistencia a los antimicrobianos, 2015.
dc.relationA. K. Marr, W. J. Gooderham, and R. E. Hancock, “Antibacterial peptides for therapeutic use: obstacles and realistic outlook,” Current Opinion in Pharmacology, vol. 6, no. 5. 2006. doi: 10.1016/j.coph.2006.04.006.
dc.relationC. D. Fjell, J. A. Hiss, R. E. W. Hancock, and G. Schneider, “Designing antimicrobial peptides: Form follows function,” Nature Reviews Drug Discovery, vol. 11, no. 1. 2012. doi: 10.1038/nrd3591.
dc.relationA. Talevi and L. E. Bruno-Blanch, “Screening virtual: Una herramienta eficaz para el desarrollo de nuevos fármacos en Latinoamérica,” Latin American Journal of Pharmacy, vol. 28, no. 1. 2009.
dc.relationJ. Yan et al., “Deep-AmPEP30: Improve Short Antimicrobial Peptides Prediction with Deep Learning,” Mol Ther Nucleic Acids, vol. 20, 2020, doi: 10.1016/j.omtn.2020.05.006.
dc.relationD. Veltri, U. Kamath, and A. Shehu, “Deep learning improves antimicrobial peptide recognition,” Bioinformatics, vol. 34, no. 16, 2018, doi: 10.1093/bioinformatics/bty179.
dc.relationM. Kozić et al., “Predicting the Minimal Inhibitory Concentration for Antimicrobial Peptides with Rana-Box Domain,” J Chem Inf Model, vol. 55, no. 10, 2015, doi: 10.1021/acs.jcim.5b00161.
dc.relationE. G. Sevillano, “¿Cuánto cuesta fabricar un medicamento?,” EL PAÍS, 2015.
dc.relationA. Orrego Pérez, J. W. Branch Bedoya, C. A. Mera Banguero, and S. Orduz Peralta, “Sistema de Inteligencia Artificial para la Predicción o Generación Automática de péptidos Bioactivos,” Universidad Nacional de Colombia, 2020.
dc.relationA. Orrego Pérez, C. A. Mera Banguero, S. Orduz Peralta, and J. W. Branch Bedoya, “Red Generativa Antagónica para la Generación de Péptidos Antimicrobianos Sintéticos,” 2021.
dc.relationA. T. Müller, J. A. Hiss, and G. Schneider, “Recurrent Neural Network Model for Constructive Peptide Design,” J Chem Inf Model, vol. 58, no. 2, pp. 472–479, 2018, doi: 10.1021/acs.jcim.7b00414.
dc.relationJ. R. Mxkee. Trudy Mckee, Bioquimica (las bases moleculares de la vida), vol. 53, no. 9. 2013.
dc.relationP. Gutiérrez and S. Orduz, “PÉPTIDOS ANTIMICROBIANOS: ESTRUCTURA, FUNCIÓN Y APLICACIONES,” Actual Biol, vol. 25, no. 78, 2003.
dc.relationA. A. Bahar and D. Ren, “Antimicrobial Peptides,” Pharmaceuticals , vol. 6, no. 12. 2013. doi: 10.3390/ph6121543.
dc.relationI. J. Goodfellow et al., “Generative Adversarial Networks,” Jun. 2014, Accessed: Dec. 14, 2021. [Online]. Available: https://arxiv.org/abs/1406.2661
dc.relationT. Karras, S. Laine, and T. Aila, “A Style-Based Generator Architecture for Generative Adversarial Networks,” IEEE Trans Pattern Anal Mach Intell, vol. 43, no. 12, pp. 4217–4228, 2021, doi: 10.1109/TPAMI.2020.2970919.
dc.relationC. Donahue, J. McAuley, and M. Puckette, “Adversarial Audio Synthesis,” Feb. 2018.
dc.relationA. Clark, J. Donahue, and K. Simonyan, “Adversarial Video Generation on Complex Datasets,” Jul. 2019.
dc.relationP. Isola, J.-Y. Zhu, T. Zhou, and A. A. Efros, “Image-to-Image Translation with Conditional Adversarial Networks,” Nov. 2016.
dc.relationZ. Xu, M. Wilber, C. Fang, A. Hertzmann, and H. Jin, “Learning from Multi-domain Artistic Images for Arbitrary Style Transfer,” May 2018.
dc.relationH. Zhang et al., “StackGAN: Text to Photo-realistic Image Synthesis with Stacked Generative Adversarial Networks,” Dec. 2016.
dc.relationI. Goodfellow, “NIPS 2016 Tutorial: Generative Adversarial Networks,” Dec. 2016.
dc.relationM. Arjovsky and L. Bottou, “Towards principled methods for training generative adversarial networks,” in 5th International Conference on Learning Representations, ICLR 2017 - Conference Track Proceedings, 2017.
dc.relationM. Arjovsky, S. Chintala, and L. Bottou, “Wasserstein GAN,” Jan. 2017.
dc.relationL. Metz, J. Sohl-Dickstein, B. Poole, and D. Pfau, “Unrolled generative adversarial networks,” in 5th International Conference on Learning Representations, ICLR 2017 - Conference Track Proceedings, 2017.
dc.relationK. Roth, A. Lucchi, S. Nowozin, and T. Hofmann, “Stabilizing training of generative adversarial networks through regularization,” in Advances in Neural Information Processing Systems, 2017, vol. 2017-Decem, pp. 2019–2029.
dc.relationT. Salimans, I. Goodfellow, W. Zaremba, V. Cheung, A. Radford, and X. Chen, “Improved Techniques for Training GANs,” Jun. 2016.
dc.relationM. Mirza and S. Osindero, “Conditional Generative Adversarial Nets,” Nov. 2014, Accessed: Dec. 16, 2021. [Online]. Available: https://arxiv.org/abs/1411.1784
dc.relationY. Shen, J. Gu, X. Tang, and B. Zhou, “Interpreting the Latent Space of GANs for Semantic Face Editing,” Jul. 2019.
dc.relationJ. Langr and V. Bok, GANs in action, vol. 53, no. 9. 2019.
dc.relationS. Hochreiter and J. Schmidhuber, “Long Short-term Memory,” Neural Comput, vol. 9, pp. 1735–1780, Dec. 1997, doi: 10.1162/neco.1997.9.8.1735.
dc.relationF. Chollet, Deep Learning with Python, 1st ed. USA: Manning Publications Co., 2017.
dc.relationAurélien Géron, Hands-on machine learning with Scikit-Learn, Keras and TensorFlow: concepts, tools, and techniques to build intelligent systems. 2019.
dc.relationK. Cho et al., “Learning phrase representations using RNN encoder-decoder for statistical machine translation,” in EMNLP 2014 - 2014 Conference on Empirical Methods in Natural Language Processing, Proceedings of the Conference, 2014. doi: 10.3115/v1/d14-1179.
dc.relationM. Schuster and K. K. Paliwal, “Bidirectional recurrent neural networks,” IEEE Transactions on Signal Processing, vol. 45, no. 11, 1997, doi: 10.1109/78.650093.
dc.relationF. Grisoni, C. S. Neuhaus, G. Gabernet, A. T. Müller, J. A. Hiss, and G. Schneider, “Designing Anticancer Peptides by Constructive Machine Learning,” ChemMedChem, vol. 13, no. 13, pp. 1300–1302, 2018, doi: 10.1002/cmdc.201800204.
dc.relationRenaud Samuel and Mansbach Rachael, “Latent Spaces for Antimicrobial Peptide Design,” ChemRxiv, Sep. 2022.
dc.relationC. Wang, S. Garlick, and M. Zloh, “Deep learning for novel antimicrobial peptide design,” Biomolecules, vol. 11, no. 3, pp. 1–17, 2021, doi: 10.3390/biom11030471.
dc.relationP. Das et al., “Accelerated antimicrobial discovery via deep generative models and molecular dynamics simulations,” Nat Biomed Eng, vol. 5, no. 6, 2021, doi: 10.1038/s41551-021-00689-x.
dc.relationA. Rossetto and W. Zhou, “GANDALF: Peptide Generation for Drug Design using Sequential and Structural Generative Adversarial Networks,” in Proceedings of the 11th ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, BCB 2020, 2020. doi: 10.1145/3388440.3412487.
dc.relationP. Das et al., “PepCVAE: Semi-Supervised Targeted Design of Antimicrobial Peptide Sequences,” Oct. 2018, Accessed: Dec. 14, 2021. [Online]. Available: https://arxiv.org/abs/1810.07743
dc.relationK. Hasegawa, Y. Moriwaki, T. Terada, C. Wei, and K. Shimizu, “Feedback-AVPGAN: Feedback-guided generative adversarial network for generating antiviral peptides,” J Bioinform Comput Biol, vol. 20, no. 6, 2022, doi: 10.1142/S0219720022500263.
dc.relationS. N. Dean, J. A. E. Alvarez, D. Zabetakis, S. A. Walper, and A. P. Malanoski, “PepVAE: Variational Autoencoder Framework for Antimicrobial Peptide Generation and Activity Prediction,” Front Microbiol, vol. 12, 2021, doi: 10.3389/fmicb.2021.725727.
dc.relationA. Vélez, C. Mera, S. Orduz, and J. W. Branch, “Synthetic antimicrobial peptides generation using recurrent neural networks | Generación de péptidos antimicrobianos mediante redes neuronales recurrentes,” DYNA (Colombia), vol. 88, no. 216, pp. 210–219, 2021, doi: 10.15446/dyna.v88n221.88799.
dc.relationC. M. van Oort, J. B. Ferrell, J. M. Remington, S. Wshah, and J. Li, “AMPGAN v2: Machine Learning-Guided Design of Antimicrobial Peptides,” J Chem Inf Model, vol. 61, no. 5, pp. 2198–2207, 2021, doi: 10.1021/acs.jcim.0c01441.
dc.relationJ. B. Ferrell et al., “A Generative Approach Toward Precision Antimicrobial Peptide Design,” bioRxiv, p. 2020.10.02.324087, Jan. 2020, doi: 10.1101/2020.10.02.324087.
dc.relationP. Szymczak et al., “HydrAMP: a deep generative model for antimicrobial peptide discovery,” bioRxiv, p. 2022.01.27.478054, Jan. 2022, doi: 10.1101/2022.01.27.478054.
dc.relationA. Capecchi, X. Cai, H. Personne, T. Köhler, C. van Delden, and J. L. Reymond, “Machine learning designs non-hemolytic antimicrobial peptides,” Chem Sci, vol. 12, no. 26, 2021, doi: 10.1039/d1sc01713f.
dc.relationD. Nagarajan et al., “Computational antimicrobial peptide design and evaluation against multidrug-resistant clinical isolates of bacteria,” J. Biol. Chem., vol. 293, p. 3492, 2018.
dc.relationM. Ghorbani, S. Prasad, B. R. Brooks, and J. B. Klauda, “Deep attention based variational autoencoder for antimicrobial peptide discovery,” bioRxiv, p. 2022.07.08.499340, Jan. 2022, doi: 10.1101/2022.07.08.499340.
dc.relationM. Pirtskhalava et al., “DBAASP v3: Database of antimicrobial/cytotoxic activity and structure of peptides as a resource for development of new therapeutics,” Nucleic Acids Res, vol. 49, no. D1, 2021, doi: 10.1093/nar/gkaa991.
dc.relationA. Bateman, “UniProt: A worldwide hub of protein knowledge,” Nucleic Acids Res, vol. 47, no. D1, 2019, doi: 10.1093/nar/gky1049.
dc.relationH. T. Lee, C. C. Lee, J. R. Yang, J. Z. C. Lai, K. Y. Chang, and O. Ray, “A large-scale structural classification of Antimicrobial peptides,” BioMed Research International, vol. 2015. 2015. doi: 10.1155/2015/475062.
dc.relationG. Wang, X. Li, and Z. Wang, “APD3: The antimicrobial peptide database as a tool for research and education,” Nucleic Acids Res, vol. 44, no. D1, 2016, doi: 10.1093/nar/gkv1278.
dc.relationX. Zhao, H. Wu, H. Lu, G. Li, and Q. Huang, “LAMP: A Database Linking Antimicrobial Peptides,” PLoS One, vol. 8, no. 6, 2013, doi: 10.1371/journal.pone.0066557.
dc.relationS. N. Dean and S. A. Walper, “Variational autoencoder for generation of antimicrobial peptides,” ACS Omega, vol. 5, no. 33, pp. 20746–20754, 2020, doi: 10.1021/acsomega.0c00442.
dc.relationF. Chollet and others, “Keras.” 2015.
dc.relationA. Paszke et al., “Automatic differentiation in PyTorch,” 2017.
dc.relationMartín~Abadi et al., “ TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems.” 2015. [Online]. Available: https://www.tensorflow.org/
dc.relationR. Collobert, K. Kavukcuoglu, and C. Farabet, “Torch7: A Matlab-like Environment for Machine Learning,” in BigLearn, NIPS Workshop, 2011.
dc.relationS. Chen and H. U. Kim, “Designing Novel Functional Peptides by Manipulating a Temperature in the Softmax Function Coupled with Variational Autoencoder,” in Proceedings -2019 IEEE International Conference on Big Data, Big Data 2019, 2019. doi: 10.1109/BigData47090.2019.9006253.
dc.relationA. Tucs, D. P. Tran, A. Yumoto, Y. Ito, T. Uzawa, and K. Tsuda, “Generating ampicillin-level antimicrobial peptides with activity-aware generative adversarial networks,” ACS Omega, vol. 5, no. 36, pp. 22847–22851, 2020, doi: 10.1021/acsomega.0c02088.
dc.relationT.-T. Lin et al., “Discovering Novel Antimicrobial Peptides in Generative Adversarial Network,” bioRxiv, 2021.
dc.relationA. Orrego Pérez et al., “PepMultiTools,” 2019. https://ciencias.medellin.unal.edu.co/gruposdeinvestigacion/prospeccionydisenobiomoleculas/herramientas/pepmultitools.html
dc.relationC. M. Van Oort, J. B. Ferrell, J. M. Remington, S. Wshah, and J. Li, “AMPGAN v2: Machine Learning-Guided Design of Antimicrobial Peptides,” J Chem Inf Model, vol. 61, no. 5, pp. 2198–2207, 2021, doi: 10.1021/acs.jcim.0c01441.
dc.relationA. Gupta and J. Zou, “Feedback GAN for DNA optimizes protein functions,” Nat Mach Intell, vol. 1, no. 2, pp. 105–111, 2019, doi: 10.1038/s42256-019-0017-4.
dc.relationA. Tucs, D. P. Tran, A. Yumoto, Y. Ito, T. Uzawa, and K. Tsuda, “Generating ampicillin-level antimicrobial peptides with activity-aware generative adversarial networks,” ACS Omega, vol. 5, no. 36, pp. 22847–22851, 2020, doi: 10.1021/acsomega.0c02088.
dc.relationM. Lu and T. Gibson, “Development of Predictive Tools for Anti-Cancer Peptide Candidates using Generative Machine Learning Models,” The Journal of Young Investigators, May 2021.
dc.relationD. Wang, Z. Wen, L. Li, and H. Zhou, “Generating Antimicrobial Peptides from Latent Secondary Structure Space.” 2022. [Online]. Available: https://openreview.net/forum?id=ajOSNLwqssu
dc.relationJ. Mao et al., “Application of a deep generative model produces novel and diverse functional peptides against microbial resistance,” Comput Struct Biotechnol J, vol. 21, pp. 463–471, 2023, doi: https://doi.org/10.1016/j.csbj.2022.12.029.
dc.relationJ. W. Branch Bedoya, C. A. Mera Banguero, and S. Orduz Peralta, “Sistema de inteligencia artificial para la predicción y generación automática de péptidos bioactivos”.
dc.relationJ. W. Branch Bedoya, C. A. Mera Banguero, and S. Orduz Peralta, “Prototipo de una Máquina de Inteligencia Artificial para la Predicción de la Actividad Antimicrobiana a Partir del Análisis de Proteomas,” 2020.
dc.relationE. Asgari and M. R. K. Mofrad, “ProtVec: A Continuous Distributed Representation of Biological Sequences,” Mar. 2015, doi: 10.1371/journal.pone.0141287.
dc.relationP. J. A. Cock et al., “Biopython: Freely available Python tools for computational molecular biology and bioinformatics,” Bioinformatics, vol. 25, no. 11, 2009, doi: 10.1093/bioinformatics/btp163.
dc.relationD. S. Cao, Y. Z. Liang, J. Yan, G. S. Tan, Q. S. Xu, and S. Liu, “PyDPI: Freely available python package for chemoinformatics, bioinformatics, and chemogenomics studies,” J Chem Inf Model, vol. 53, no. 11, 2013, doi: 10.1021/ci400127q.
dc.relationA. T. Müller, G. Gabernet, J. A. Hiss, and G. Schneider, “modlAMP: Python for antimicrobial peptides,” Bioinformatics, vol. 33, no. 17, 2017, doi: 10.1093/bioinformatics/btx285.
dc.relationS. Ramírez Montaño, “FastAPI,” 2023.
dc.relationJ. Amat Rodrigo, “Comparación de distribuciones con python: test Kolmogorov–Smirnov.” https://www.cienciadedatos.net/documentos/pystats08-comparacion-distribuciones-test-kolmogorov-smirnov-python.html (accessed May 24, 2022).
dc.relationM. Heusel, H. Ramsauer, T. Unterthiner, B. Nessler, and S. Hochreiter, “GANs trained by a two time-scale update rule converge to a local Nash equilibrium,” in Advances in Neural Information Processing Systems, 2017, vol. 2017-December.
dc.relationD. C. Dowson and B. v. Landau, “The Fréchet distance between multivariate normal distributions,” J Multivar Anal, vol. 12, no. 3, 1982, doi: 10.1016/0047-259X(82)90077-X.
dc.relationF. H. Waghu, R. S. Barai, P. Gurung, and S. Idicula-Thomas, “CAMPR3: A database on sequences, structures and signatures of antimicrobial peptides,” Nucleic Acids Res, vol. 44, no. D1, pp. D1094–D1097, 2016, doi: 10.1093/nar/gkv1051.
dc.relationC. R. Chung, T. R. Kuo, L. C. Wu, T. Y. Lee, and J. T. Horng, “Characterization and identification of antimicrobial peptides with different functional activities,” Brief Bioinform, vol. 21, no. 3, 2020, doi: 10.1093/bib/bbz043.
dc.rightsAtribución-NoComercial 4.0 Internacional
dc.rightshttp://creativecommons.org/licenses/by-nc/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.titleModelo de aprendizaje profundo para la generación automática de péptidos antimicrobianos sintéticos con funcionalidades específicas
dc.typeTrabajo de grado - Maestría


Este ítem pertenece a la siguiente institución