dc.contributorMárquez Fernández, María Elena
dc.contributorMontoya Campuzano, Olga Inés
dc.contributorProbióticos: Prospección Funcional y Metabolitos
dc.contributorGrupo de Investigación en Biotecnología Animal (Giba)
dc.contributorMárquez Fernández, María Elena [0000-0001-5760-9907]
dc.creatorRoldán Pérez, Samantha
dc.date.accessioned2022-11-08T16:26:56Z
dc.date.accessioned2023-06-06T22:26:25Z
dc.date.available2022-11-08T16:26:56Z
dc.date.available2023-06-06T22:26:25Z
dc.date.created2022-11-08T16:26:56Z
dc.date.issued2022-11
dc.identifierhttps://repositorio.unal.edu.co/handle/unal/82661
dc.identifierUniversidad Nacional de Colombia
dc.identifierRepositorio Institucional Universidad Nacional de Colombia
dc.identifierhttps://repositorio.unal.edu.co/
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/6650694
dc.description.abstractLas Bacterias Ácido Lácticas (BAL) son productoras de ácido láctico, reconocidas como probióticas seguras, que administradas en cantidades adecuadas confieren un beneficio para la salud del hospedero. Las BAL pueden aislarse de derivados lácteos artesanales, como el Queso Doble Crema (QDC). El objetivo de esta investigación fue evaluar la capacidad de adhesión de las cepas Pediococcus pentosaceus, Weissella viridescens y Lacticaseibacillus casei con propiedades probióticas en líneas celulares humanas tumorales de colon SW480 y SW620. A estas cepas BAL aisladas y caracterizadas previamente de un QDC, se le evaluaron algunas de sus propiedades probióticas como la resistencia a diferentes condiciones de pH y de sales biliares, sensibilidad a los antibióticos, actividad antibacteriana, capacidad de autoagregación, producción de exopolisacáridos y adhesión a líneas celulares humanas tumorales de colon SW480 y SW620. Todas las cepas BAL-QDC sobrevivieron en condiciones de pH (5.5, 6.5 y 8.0) y a sales biliares (0.3%, 0.6% y 1.0% p/v); además, inhibieron el crecimiento de E. coli ATCC 25922, S. Typhimurium ATCC 14028, S. aureus ATCC 25923 y L. monocytogenes, excepto W. viridescens que no inhibió a L. monocytogenes. Las BAL-QDC P. pentosaceus, W. viridescens y L. casei no mostraron resistencia a los antibióticos Gentamicina, Penicilina, Vancomicina, Ampicilina, Tetraciclina y Cloranfenicol, pero W. viridescens exhibió resistencia al cloranfenicol. Las BAL-QDC también presentaron capacidad de autoagregación y porcentajes de adhesión superiores al 54.97% a las células SW480 y SW620 respecto a L. rhamnosus GG. Las proteínas de la capa paracristalina de las BAL-QDC afectaron únicamente la adhesión de L. casei en las células SW620 y a L. rhamnosus GG con las células SW480. (Texto tomado de la fuente)
dc.description.abstractLactic Acid Bacteria (LAB) are producers of lactic acid, recognized as safe probiotics, which when administered in adequate amounts confer a health benefit on the host. BAL can be isolated from artisan dairy products, such as Double Cream Cheese (DCC). The aim of this research was to evaluate the adhesion capacity of the strains Pediococcus pentosaceus, Weissella viridescens and Lacticaseibacillus casei with probiotic properties in human colonic tumor cell lines SW480 and SW620. These LAB strains previously isolated and characterized from a DCC were evaluated for some of their probiotic properties such as resistance to different pH and bile salt conditions, sensitivity to antibiotics, antibacterial activity, autoaggregation capacity, production of exopolysaccharides and adhesion to human colonic tumor cell lines SW480 and SW620. All LAB-DCC strains survived under conditions of pH (5.5, 6.5 and 8.0) and bile salts (0.3%, 0.6% and 1.0% w/v); In addition, they inhibited the growth of E. coli ATCC 25922, S. Typhimurium ATCC 14028, S. aureus ATCC 25923, and L. monocytogenes, except for W. viridescens, which did not inhibit L. monocytogenes. LAB-DCC P. pentosaceus, W. viridescens and L. casei did not show resistance to the antibiotics Gentamicin, Penicillin, Vancomycin, Ampicillin, Tetracycline and Chloramphenicol, but W. viridescens showed resistance to chloramphenicol. LAB-DCC also showed autoaggregation capacity and adhesion percentages higher than 54.965% to SW480 and SW620 cells relative to L. rhamnosus GG. LAB-DCC S-layer proteins affected only the adhesion of L. casei to SW620 cells and L. rhamnosus GG to SW480 cells.
dc.languagespa
dc.publisherUniversidad Nacional de Colombia
dc.publisherMedellín - Ciencias - Maestría en Ciencias - Biotecnología
dc.publisherFacultad de Ciencias
dc.publisherMedellín, Colombia
dc.publisherUniversidad Nacional de Colombia - Sede Medellín
dc.relationRedCol
dc.relationLaReferencia
dc.relationAbraham, B. P., & Quigley, E. M. M. (2017). Probiotics in Inflammatory Bowel Disease. Gastroenterology Clinics of North America, 46(4), 769–782. https://doi.org/10.1016/j.gtc.2017.08.003
dc.relationAbriouel, H., Lerma, L. L., Casado Muñoz, M. del C., Montoro, B. P., Kabisch, J., Pichner, R., Cho, G. S., Neve, H., Fusco, V., Franz, C. M. A. P., Gálvez, A., & Benomar, N. (2015). The controversial nature of the Weissella genus: Technological and functional aspects versus whole genome analysis-based pathogenic potential for their application in food and health. Frontiers in Microbiology, 6(OCT). https://doi.org/10.3389/fmicb.2015.01197
dc.relationAdesulu-Dahunsi, A. T., Sanni, A. I., & Jeyaram, K. (2021). Diversity and technological characterization of Pediococcus pentosaceus strains isolated from Nigerian traditional fermented foods. LWT, 140(110697). https://doi.org/10.1016/j.lwt.2020.110697
dc.relationAdu, K. T., Wilson, R., Baker, A. L., Bowman, J., & Britz, M. L. (2020). Prolonged Heat Stress of Lactobacillus paracasei GCRL163 Improves Binding to Human Colorectal Adenocarcinoma HT-29 Cells and Modulates the Relative Abundance of Secreted and Cell Surface-Located Proteins. J. Proteome Res, 19, 47. https://doi.org/10.1021/acs.jproteome.0c00107
dc.relationAkpınar Kankaya, D., & Tuncer, Y. (2020). Antibiotic resistance in vancomycin-resistant lactic acid bacteria (VRLAB) isolated from foods of animal origin. Journal of Food Processing and Preservation, 44(6), 1–14. https://doi.org/10.1111/jfpp.14468
dc.relationAllied Market Research. (2021). Probiotics Market Size & Share Analysis Report, 2021-2028. https://www.grandviewresearch.com/industry-analysis/probiotics-market/methodology
dc.relationAlp, D., & Kuleaşan, H. (2019). Adhesion mechanisms of lactic acid bacteria: conventional and novel approaches for testing. World Journal of Microbiology and Biotechnology, 35(10), 1–9. https://doi.org/10.1007/s11274-019-2730-x
dc.relationAman, F., & Masood, S. (2020). How Nutrition can help to fight against COVID-19 Pandemic. Pakistan Journal of Medical Sciences, 36(COVID19-S4). https://doi.org/10.12669/PJMS.36.COVID19-S4.2776
dc.relationÁngela Castro, L., Act, B., & R Ovetto, C. DE. (2006). Probióticos: utilidad clínica (Vol. 37). Octubre-Diciembre.
dc.relationAngelis, M. De, & Gobbetti, M. (2016). Lactobacillus SPP.: General Characteristics☆. In Reference Module in Food Science (pp. 1–12). Elsevier. https://doi.org/https://doi.org/10.1016/B978-0-08-100596-5.00851-9
dc.relationArmas, F., Camperio, C., & Marianelli, C. (2017). In Vitro Assessment of the probiotic potential of Lactococcus lactis LMG 7930 against ruminant mastitis-causing pathogens. PLOS ONE, 12(1), e0169543. https://doi.org/10.1371/journal.pone.0169543
dc.relationArshad, F., Mehmood, R., Hussain, S., Khan, M. A., & Khan, M. S. (2018). Lactobacilli as Probiotics and their Isolation from Different Sources. Br J Res, 5(3), 43. https://doi.org/10.21767/2394-3718.100043
dc.relationAryal Sagal. (2018, June 12). Capsule Staining- Principle, Reagents, Procedure and Result. Microbiologyinfo.Com. https://microbiologyinfo.com/capsule-staining-principle-reagents-procedure-and-result/
dc.relationAssamoi, A. A., Krabi, E. R., Ehon, A. F., N’guessan, G. A., Niamké, L. S., & Thonart, P. (2016). Isolation and screening of Weissella strains for their potential use as starter during attiéké production. BASE, 20(3), 355–362. https://doi.org/10.25518/1780-4507.13117
dc.relationAstó, E., Huedo, P., Altadill, T., Aguiló García, M., Sticco, M., Perez, M., & Espadaler-Mazo, J. (2022). Probiotic Properties of Bifidobacterium longum KABP042 and Pediococcus pentosaceus KABP041 Show Potential to Counteract Functional Gastrointestinal Disorders in an Observational Pilot Trial in Infants. Frontiers in Microbiology, 12. https://doi.org/10.3389/fmicb.2021.741391
dc.relationATCC. (2020). SW480 [SW-480] ATCC ® CCL-228TM. ATCC.Org. https://www.atcc.org/Products/All/CCL-228.aspx#characteristics
dc.relationAyeni, F. A., Sánchez, B., Adeniyi, B. A., de los Reyes-Gavilán, C. G., Margolles, A., & Ruas-Madiedo, P. (2011). Evaluation of the functional potential of Weissella and Lactobacillus isolates obtained from Nigerian traditional fermented foods and cow’s intestine. International Journal of Food Microbiology, 147(2), 97–104. https://doi.org/10.1016/j.ijfoodmicro.2011.03.014
dc.relationBakar, F., Karakay, Songül, Bostanlık, D., Gül, F., & Kılıç, C. S. (2016). Anticancer Effect of Ferulago Mughlea Peşmen (Apiaceae) on Cancer Cell Proliferation. Iranian Journal of Pharmaceutical Research : IJPR, 15(3), 501. https://doi.org/10.22037/ijpr.2016.1882
dc.relationBalakrishna, A. (2013). In vitro evaluation of adhesion and aggregation abilities of four potential probiotic strains isolated from guppy (poecilia reticulata). Brazilian Archives of Biology and Technology, 56(5), 793–800. https://doi.org/10.1590/S1516-89132013000500010
dc.relationBaliga, S., Muglikar, S., & Kale, R. (2013). Salivary pH: A diagnostic biomarker. Journal of Indian Society of Periodontology, 17(4), 461. https://doi.org/10.4103/0972-124X.118317
dc.relationBalthazar, C. F., Silva, H. L. A., Esmerino, E. A., Rocha, R. S., Moraes, J., Carmo, M. A. V., Azevedo, L., Camps, I., K.D Abud, Y., Sant’Anna, C., Franco, R. M., Freitas, M. Q., Silva, M. C., Raices, R. S. L., Escher, G. B., Granato, D., Senaka Ranadheera, C., Nazarro, F., & Cruz, A. G. (2018). The addition of inulin and Lactobacillus casei 01 in sheep milk ice cream. Food Chemistry, 246(August 2017), 464–472. https://doi.org/10.1016/j.foodchem.2017.12.002
dc.relationBaranov, V., & Hammarström, S. (2004). Carcinoembryonic antigen [CEA] and CEA-related cell adhesion molecule 1 (CEACAM1), apically expressed on human colonic M cells, are potential receptors for microbial adhesion. Histochemistry and Cell Biology, 121(2), 83–89. https://doi.org/10.1007/s00418-003-0613-5
dc.relationBarzegar, H., Alizadeh Behbahani, B., & Falah, F. (2021). Safety, probiotic properties, antimicrobial activity, and technological performance of Lactobacillus strains isolated from Iranian raw milk cheeses. Food Science & Nutrition, 9(8). https://doi.org/10.1002/FSN3.2365
dc.relationBeldarrain-Iznaga, T., Villalobos-Carvajal, R., Sevillano-Armesto, E., & Leiva-Vega, J. (2021). Functional properties of Lactobacillus casei C24 improved by microencapsulation using multilayer double emulsion. Food Research International, 141(January), 110136. https://doi.org/10.1016/j.foodres.2021.110136
dc.relationBeltrán de Heredia, M. R. (2017). Microbiota autóctona. Farmacia Profesional, 31(2), 17–21. https://www.elsevier.es/es-revista-farmacia-profesional-3-pdf-X0213932417608739
dc.relationBergey, D. H. (2009). Vol 3: The Firmicutes. In Bergey’s manual of systematic bacteriology. https://doi.org/10.1007/b92997
dc.relationBermudez-Brito, M., Plaza-Díaz, J., Muñoz-Quezada, S., Gómez-Llorente, C., & Gil, A. (2012). Probiotic Mechanisms of Action. Annals of Nutrition and Metabolism, 61(2), 160–174. https://doi.org/10.1159/000342079
dc.relationBetancur, C., Martínez, Y., Tellez‐isaias, G., Avellaneda, M. C., & Velázquez‐martí, B. (2020). In vitro characterization of indigenous probiotic strains isolated from colombian creole pigs. Animals, 10(7), 1–11. https://doi.org/10.3390/ani10071204
dc.relationBharat, T. A. M., von Kügelgen, A., & Alva, V. (2021). Molecular Logic of Prokaryotic Surface Layer Structures. Trends in Microbiology, 29(5), 405. https://doi.org/10.1016/J.TIM.2020.09.009
dc.relationBhukya, K. K., & Bhukya, B. (2021). Unraveling the probiotic efficiency of bacterium Pediococcus pentosaceus OBK05 isolated from buttermilk: An in vitro study for cholesterol assimilation potential and antibiotic resistance status. PLoS ONE, 16(11 November), 1–20. https://doi.org/10.1371/journal.pone.0259702
dc.relationBiazik, J. M., Jahn, K. A., Su, Y., Wu, Y. N., & Braet, F. (2010). Unlocking the ultrastructure of colorectal cancer cells in vitro using selective staining. World Journal of Gastroenterology, 16(22), 2743–2753. https://doi.org/10.3748/wjg.v16.i22.2743
dc.relationBjörkroth, J., Dicks, L. M. T., Endo, A., & H.Holzapfel, W. (2014). The genus Leuconostoc. In Lactic Acid Bacteria (pp. 391–404). John Wiley & Sons, Ltd. https://doi.org/10.1002/9781118655252.ch23
dc.relationBlottière, H. M., de Vos, W. M., Ehrlich, S. D., & Doré, J. (2013). Human intestinal metagenomics: State of the art and future. Current Opinion in Microbiology, 16(3), 232–239. https://doi.org/10.1016/j.mib.2013.06.006
dc.relationBolen, B. (2019). Types and Functions of Digestive Enzymes. Verywellhealth. https://www.verywellhealth.com/what-are-digestive-enzymes-1945036
dc.relationBolívar Parra, L., Giraldo Hincapié, P. A., & Montoya Campuzano, O. I. (2020). Antimicrobial activity of a synthetic bacteriocin found in the genome of lactobacillus casei on the microbiota of antioquian soft cheese (Quesito antioqueÑo). Vitae, 27(1), 1–9. https://doi.org/10.17533/udea.vitae.v27n1a02
dc.relationBron, P. A., Kleerebezem, M., Brummer, R.-J., Cani, P. D., Mercenier, A., MacDonald, T. T., Garcia-Ródenas, C. L., & Wells, J. M. (2017). Can probiotics modulate human disease by impacting intestinal barrier function? British Journal of Nutrition, 117(1), 93–107. https://doi.org/10.1017/S0007114516004037
dc.relationBrunser T, O. (2013). El desarrollo de la microbiota intestinal humana, el concepto de probiótico y su relación con la salud humana. Revista Chilena de Nutrición, 40(3), 283–289. https://doi.org/10.4067/S0717-75182013000300011
dc.relationByakika, S., Mukisa, I. M., Byaruhanga, Y. B., & Muyanja, C. (2019). A Review of Criteria and Methods for Evaluating the Probiotic Potential of Microorganisms. Food Reviews International, 35(5), 427–466. https://doi.org/10.1080/87559129.2019.1584815
dc.relationCadirci, B., & Sumru, C. (2005). A Comparison of Two Methods Used for Measuring Antagonistic Activity of Lactic Acid Bacteria. Pakistan Journal of Nutrition, 4. https://doi.org/10.3923/pjn.2005.237.241
dc.relationCámara de Industria y Comercio Colombo-Alemana, Cámara de Comercio de Medellín para Antioquia, Institución Universitaria Esumer, & Observatorio de Tendencias Futuras 360°. (2021). Contexto, tendencias y oportunidades del mercado de los derivados lácteos en Antioquia, 2021. In Derivados lácteos (Vol. 1). https://www.camaramedellin.com.co/Portals/0/Documentos/2021/ESTUDIO DE TENDENCIAS DERIVADOS LACTEOS 2021 abril 12.pdf?ver=2021-04-13-140402-407
dc.relationCamilleri, M. (2021). Human Intestinal Barrier: Effects of Stressors, Diet, Prebiotics, and Probiotics. Clinical and Translational Gastroenterology, 12(1), e00308. https://doi.org/10.14309/ctg.0000000000000308
dc.relationCao, Z., Pan, H., Tong, H., Gu, D., Li, S., Xu, Y., Ge, C., & Lin, Q. (2016). In vitro evaluation of probiotic potential of Pediococcus pentosaceus L1 isolated from paocai—a Chinese fermented vegetable. Annals of Microbiology, 66(3), 963–971. https://doi.org/10.1007/s13213-015-1182-2
dc.relationCasalta, E., & Montel, M. (2008). Safety assessment of dairy microorganisms: The Lactococcus genus☆. International Journal of Food Microbiology, 126(3), 271–273. https://doi.org/10.1016/j.ijfoodmicro.2007.08.013
dc.relationCasarotti, S. N., Carneiro, B. M., Svetoslav, &, Todorov, D., Nero, L. A., Rahal, P., Lúcia, A., Penna, B., Todorov, S. D., Nero, L. A., Rahal, P., & Penna, A. L. B. (2017). In vitro assessment of safety and probiotic potential characteristics of Lactobacillus strains isolated from water buffalo mozzarella cheese. Annals of Microbiology, 67(4), 289–301. https://doi.org/10.1007/s13213-017-1258-2
dc.relationCastilho, N. P. A., Colombo, M., Oliveira, L. L. De, Todorov, S. D., & Nero, L. A. (2019). Lactobacillus curvatus UFV-NPAC1 and other lactic acid bacteria isolated from calabresa, a fermented meat product, present high bacteriocinogenic activity against Listeria monocytogenes. BMC Microbiology, 19(1), 1–13. https://doi.org/10.1186/S12866-019-1436-4/FIGURES/4
dc.relationCázares-Vásquez, M. L., Rodríguez-Herrera, R., Aguilar-González, C. N., Sáenz-Galindo, A., Solanilla-Duque, J. F., Contreras-Esquivel, J. C., & Flores-Gallegos, A. C. (2021). Microbial exopolysaccharides in traditional mexican fermented beverages. Fermentation, 7(4). https://doi.org/10.3390/FERMENTATION7040249
dc.relationChelakkot, C., Ghim, J., & Ryu, S. H. (2018). Mechanisms regulating intestinal barrier integrity and its pathological implications. Experimental & Molecular Medicine, 50, 103. https://doi.org/10.1038/s12276-018-0126-x
dc.relationChen, C.-C., Lai, C.-C., Huang, H.-L., Huang, W.-Y., Toh, H.-S., Weng, T.-C., Chuang, Y.-C., Lu, Y.-C., & Tang, H.-J. (2019). Antimicrobial Activity of Lactobacillus Species Against Carbapenem-Resistant Enterobacteriaceae. Frontiers in Microbiology, 10, 789. https://doi.org/10.3389/fmicb.2019.00789
dc.relationChoeisoongnern, T., Sivamaruthi, B. S., Sirilun, S., Peerajan, S., Choiset, Y., Rabesona, H., Haertlé, T., & Chaiyasut, C. (2020). Screening and identification of bacteriocin-like inhibitory substances producing lactic acid bacteria from fermented products. Food Science and Technology, 40(3), 571–579. https://doi.org/10.1590/fst.13219
dc.relationChondrou, P., Karapetsas, A., Kiousi, D. E., Tsela, D., Tiptiri-Kourpeti, A., Anestopoulos, I., Kotsianidis, I., Bezirtzoglou, E., Pappa, A., & Galanis, A. (2018). Lactobacillus paracasei K5 displays adhesion, anti-proliferative activity and apoptotic effects in human colon cancer cells. Beneficial Microbes, 9(6), 975–983. https://doi.org/10.3920/BM2017.0183
dc.relationCLSI. (2015). Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically ; Approved Standard — Tenth Edition. CLSI document M07-A10. In Clinical and Laboratory Standars Institute.
dc.relationDarmastuti, A., Hasan, P. N., Wikandari, R., Utami, T., Rahayu, E. S., & Suroto, D. A. (2021). Adhesion properties of lactobacillus plantarum dad-13 and lactobacillus plantarum mut-7 on sprague dawley rat intestine. Microorganisms, 9(11). https://doi.org/10.3390/microorganisms9112336
dc.relationDas, D., & Goyal, A. (2012). Lactic Acid Bacteria in Food Industry. In Microorganisms in Sustainable Agriculture and Biotechnology (pp. 757–772). Springer Netherlands. https://doi.org/10.1007/978-94-007-2214-9_33
dc.relationDavis, K. (2014). Impact of Carbohydrates on the Aggregation of Probiotic Bacteria. 1(1), 1–9. https://pdfs.semanticscholar.org/59f5/27493fe786cac425391cf21af1cc6b01a1a3.pdf
dc.relationde Melo Pereira, G. V., de Oliveira Coelho, B., Magalhães Júnior, A. I., Thomaz-Soccol, V., & Soccol, C. R. (2018). How to select a probiotic? A review and update of methods and criteria. Biotechnology Advances, 36(8), 2060–2076. https://doi.org/10.1016/j.biotechadv.2018.09.003
dc.relationDell’anno, M., Giromini, C., Reggi, S., Cavalleri, M., Moscatelli, A., Onelli, E., Rebucci, R., Sundaram, T. S., Coranelli, S., Spalletta, A., Baldi, A., & Rossi, L. (2021). Evaluation of adhesive characteristics of l. Plantarum and l. reuteri isolated from weaned piglets. Microorganisms, 9(8), 1–12. https://doi.org/10.3390/microorganisms9081587
dc.relationDeng, Z., Dai, T., Zhang, W., Zhu, J., Luo, X. M., Fu, D., Liu, J., & Wang, H. (2020). Glyceraldehyde-3-phosphate dehydrogenase increases the adhesion of Lactobacillus reuteri to host mucin to enhance probiotic effects. International Journal of Molecular Sciences, 21(24), 1–16. https://doi.org/10.3390/ijms21249756
dc.relationDivyashree, S., Anjali, P. G., Somashekaraiah, R., & Sreenivasa, M. Y. (2021). Probiotic properties of Lactobacillus casei – MYSRD 108 and Lactobacillus plantarum-MYSRD 71 with potential antimicrobial activity against Salmonella paratyphi. Biotechnology Reports, 32, e00672. https://doi.org/10.1016/j.btre.2021.e00672
dc.relationdo Carmo, F. L. R., Rabah, H., de Oliveira Carvalho, R. D., Gaucher, F., Cordeiro, B. F., da Silva, S. H., Loir, Y. Le, Azevedo, V., & Jan, G. (2018). Extractable Bacterial Surface Proteins in Probiotic–Host Interaction. Frontiers in Microbiology, 9(APR). https://doi.org/10.3389/FMICB.2018.00645
dc.relationdo Carmo, M. S., Santos, C. I. Dos, Araújo, M. C., Girón, J. A., Fernandes, E. S., & Monteiro-Neto, V. (2018). Probiotics, mechanisms of action, and clinical perspectives for diarrhea management in children. Food & Function, 9(10), 5074–5095. https://doi.org/10.1039/c8fo00376a
dc.relationDouillard, F. P., Ribbera, A., Järvinen, H. M., Kant, R., Pietilä, T. E., Randazzo, C., Paulin, L., Laine, P. K., Caggia, C., von Ossowski, I., Reunanen, J., Satokari, R., Salminen, S., Palva, A., & de Vosa, W. M. (2013). Comparative genomic and functional analysis of Lactobacillus casei and Lactobacillus rhamnosus strains marketed as probiotics. Applied and Environmental Microbiology, 79(6), 1923–1933. https://doi.org/10.1128/AEM.03467-12
dc.relationDoyle, R. J., & Ofek, I. (1994). Bacterial Adhesion to Cells and Tissues (1st ed.). Chapman & Hall, Inc.
dc.relationDubey, V., Mishra, A. K., & Ghosh, A. R. (2020). Cell adherence efficacy of probiotic Pediococcus pentosaceus GS4 (MTCC 12683) and demonstrable role of its surface layer protein (Slp). Journal of Proteomics, 226(December 2019), 103894. https://doi.org/10.1016/j.jprot.2020.103894
dc.relationEFSA. (2012). Guidance on the assessment of bacterial susceptibility to antimicrobials of human and veterinary importance. EFSA Journal, 10(6). https://doi.org/10.2903/j.efsa.2012.2740
dc.relationErdoǧmuş, S. F., Erişmiş, U. C., & Uǧuz, C. (2021). Isolation and identification of lactic acid bacteria from fermented meat products and evaluation of their antimicrobial effect. Czech Journal of Food Sciences, 39(4), 289–296. https://doi.org/10.17221/222/2020-CJFS
dc.relationEscobar, J. S., Klotz, B., Valdes, B. E., & Agudelo, G. M. (2015). The gut microbiota of Colombians differs from that of Americans, Europeans and Asians. BMC Microbiology, 14(1), 311. https://doi.org/10.1186/s12866-014-0311-6
dc.relationEspinoza-Monje, M., Campos, J., Alvarez Villamil, E., Jerez, A., Dentice Maidana, S., Elean, M., Salva, S., Kitazawa, H., Villena, J., & García-Cancino, A. (2021). Characterization of weissella viridescens uco-smc3 as a potential probiotic for the skin: Its beneficial role in the pathogenesis of acne vulgaris. Microorganisms, 9(7). https://doi.org/10.3390/microorganisms9071486
dc.relationFAO/WHO. (2002). Guidelines for the Evaluation of Probiotics in Food. In Joint FAO/WHO Working Group Report.
dc.relationFAO/WHO. (2006). Probiotics in food Health and nutritional properties and guidelines for evaluation. In Report of a Joint FAO/WHO Working Group on Drafting Guidelines for the Evaluation of Probiotics in Food. http://www.fao.org/3/a-a0512e.pdf
dc.relationFarkye, N. Y. (2014). CHEESE | Microbiology of Cheesemaking and Maturation. Encyclopedia of Food Microbiology: Second Edition, 395–401. https://doi.org/10.1016/B978-0-12-384730-0.00059-8
dc.relationFernándes, M. L., Perin, L. M., Todorov, S. D., Nero, L. A., De Alencar, E. R., & De Aguiar Ferreira, M. (2018). In vitro evaluation of the safety and probiotic and technological potential of pediococcus pentosaceus isolated from sheep milk. Semina:Ciencias Agrarias, 39(1), 113–132. https://doi.org/10.5433/1679-0359.2018v39n1p113
dc.relationFessard, A., & Remize, F. (2017). Why Are Weissella spp. Not Used as Commercial Starter Cultures for Food Fermentation? Fermentation, 3(38), 17–18. https://doi.org/10.3390/fermentation3030038ï
dc.relationFhoula, I., Rehaiem, A., Najjari, A., Usai, D., Boudabous, A., Sechi, L. A., & Hadda-Imene, O. (2018). Functional Probiotic Assessment and in Vivo Cholesterol-Lowering Efficacy of Weissella sp. Associated with Arid Lands Living-Hosts. BioMed Research International, 2018. https://doi.org/10.1155/2018/1654151
dc.relationFijan, S. (2016). Antimicrobial Effect of Probiotics against Common Pathogens. In V. Rao & L. Rao (Eds.), Probiotics and Prebiotics in Human Nutrition and Health (pp. 191–221). InTech. https://doi.org/10.5772/63141
dc.relationFina Martin, J., Palomino, M. M., Cutine, A. M., Modenutti, C. P., Fernández Do Porto, D. A., Allievi, M. C., Zanini, S. H., Mariño, K. V, Barquero, A. A., & Ruzal, S. M. (2019). Exploring lectin-like activity of the S-layer protein of Lactobacillus acidophilus ATCC 4356. Applied Microbiology and Biotechnology, 103(12), 4839–4857. https://doi.org/10.1007/s00253-019-09795-y
dc.relationFoley, M. H., O’Flaherty, S., Allen, G., Rivera, A. J., Stewart, A. K., Barrangou, R., & Theriot, C. M. (2021). Lactobacillus bile salt hydrolase substrate specificity governs bacterial fitness and host colonization. Proceedings of the National Academy of Sciences of the United States of America, 118(6). https://doi.org/10.1073/pnas.2017709118
dc.relationFrancisco Guarner., A. G. K. (2017). Guía Práctica de la Organización Mundial de Gastroenterología: Probióticos y prebióticos. In World Gastroenterology Organisation.
dc.relationFranz, C. M. A. P., Endo, A., Abriouel, H., Van Reenen, C. A., Gálvez, A., & Dicks, L. M. T. (2014). The genus Pediococcus. Lactic Acid Bacteria: Biodiversity and Taxonomy, 9781444333(2009), 359–376. https://doi.org/10.1002/9781118655252.ch21
dc.relationGarcía-hernández, Y., Pérez-sánchez, T., García-curbelo, Y., Sosa-cossio, D., & Nicoli, J. R. (2017). Growth ability , microbial activity and susceptibility to antimicrobials of two strains of Pediococcus pentosaceus , candidates to probiotic Capacidad de crecimiento , actividad antimicrobiana y susceptibilidad a antimicrobianos de dos cepas de Pediococcu. Cuban Journal of Agricultural Science, 51(4), 433–442.
dc.relationGarcía Torres, L. (2015). Análisis proteómico de células de colon humano antes y después de la interacción con Lactobacillus casei Shirota [INSTITUTO POTOSINO DE INVESTIGACIÓN CIENTÍFICA Y TECNOLÓGICA, A.C.]. https://repositorio.ipicyt.edu.mx/handle/11627/3906
dc.relationGerbino, E., Carasi, P., Mobili, P., Serradell, M. A., & Gómez-Zavaglia, A. (2015). Role of S-layer proteins in bacteria. World Journal of Microbiology and Biotechnology, 31(12), 1877–1887. https://doi.org/10.1007/s11274-015-1952-9
dc.relationGil-Sánchez, I., Bartolomé Suáldea, B., & Victoria Moreno-Arribas, M. (2019). Malolactic Fermentation. In Red Wine Technology (pp. 85–98). Elsevier. https://doi.org/10.1016/B978-0-12-814399-5.00006-2
dc.relationGogineni, V. K., Morrow, L. E., Gregory, P. J., & Malesker, M. A. (2013). Probiotics: History and Evolution. Journal of Infectious Diseases and Preventive Medicine, 1(2), 1–7. https://doi.org/10.4172/2329-8731.1000107
dc.relationGrilli, D. J., Mansilla, M. E., Giménez, M. C., Sohaefer, N., Ruiz, M. S., Terebiznik, M. R., Sosa, M., & Arenas, G. N. (2019). Pseudobutyrivibrio xylanivorans adhesion to epithelial cells. Anaerobe, 56, 1–7. https://doi.org/10.1016/J.ANAEROBE.2019.01.001
dc.relationGuan, C., Chen, X., Jiang, X., Zhao, R., Yuan, Y., Chen, D., Zhang, C., Lu, M., Lu, Z., & Gu, R. (2020). In vitro studies of adhesion properties of six lactic acid bacteria isolated from the longevous population of China. RSC Advances, 10(41), 24234–24240. https://doi.org/10.1039/d0ra03517c
dc.relationGuan, N., & Liu, L. (2020). Microbial response to acid stress: mechanisms and applications. Applied Microbiology and Biotechnology, 104(1), 51–65. https://doi.org/10.1007/s00253-019-10226-1
dc.relationGuarner, F., Sanders, M. E., Eliakim, R., Fedorak, R., Gangl, A., & Garisch, J. (2017). Guías Mundiales de la Organización Mundial de Gastroenterología Enfermedad celíaca. In Organización Mundial de Gastroenterología. https://www.worldgastroenterology.org/UserFiles/file/guidelines/probiotics-and-prebiotics-spanish-2017.pdf
dc.relationGuidoli, M. G., Mendoza, J. A., Falcón, S. L., Boehringer, S. I., Sánchez, S., & Macías, M. E. F. N. (2018). Autochthonous probiotic mixture improves biometrical parameters of larvae of piaractus mesopotamicus (Caracidae, characiforme, teleostei). Ciencia Rural, 48(7). https://doi.org/10.1590/0103-8478cr20170764
dc.relationHakeem Said, I. (2018). Interaction between Plant Phenolics and Bacteria-Structure, Identification, Bioactivity and Uptake. Jacobs University.
dc.relationHanchi, H., Mottawea, W., Sebei, K., & Hammami, R. (2018). The Genus Enterococcus: Between Probiotic Potential and Safety Concerns-An Update. Frontiers in Microbiology, 9, 1791. https://doi.org/10.3389/fmicb.2018.01791
dc.relationHarvey, A., Yen, T.-Y., Aizman, I., Tate, C., & Case, C. (2013). Proteomic Analysis of the Extracellular Matrix Produced by Mesenchymal Stromal Cells: Implications for Cell Therapy Mechanism. PLoS ONE, 8(11), 79283. https://doi.org/10.1371/journal.pone.0079283
dc.relationHill, D., Sugrue, I., Tobin, C., Hill, C., Stanton, C., & Ross, R. P. (2018). The Lactobacillus casei Group: History and Health Related Applications. Frontiers in Microbiology, 0(SEP), 2107. https://doi.org/10.3389/FMICB.2018.02107
dc.relationHoráčková, Š., Plocková, M., & Demnerová, K. (2018). Importance of microbial defence systems to bile salts and mechanisms of serum cholesterol reduction. Biotechnology Advances, 36(3), 682–690. https://doi.org/10.1016/j.biotechadv.2017.12.005
dc.relationHowe, B., Umrigar, A., & Tsien, F. (2014). Chromosome preparation from cultured cells. Journal of Visualized Experiments, 83(e50203). https://doi.org/10.3791/50203
dc.relationHusain, K., Zhang, A., Shivers, S., Davis-Yadley, A., Coppola, D., Yang, C. S., & Malafa, M. P. (2019). Chemoprevention of azoxymethane-induced colon carcinogenesis by delta-tocotrienol. Cancer Prevention Research, 12(6), 357–366. https://doi.org/10.1158/1940-6207.CAPR-18-0290/36512/AM/CHEMOPREVENTION-OF-AZOXYMETHANE-INDUCED-COLON
dc.relationHynönen, U., & Palva, A. (2013). Lactobacillus surface layer proteins: structure, function and applications. Applied Microbiology and Biotechnology 2013 97:12, 97(12), 5225–5243. https://doi.org/10.1007/S00253-013-4962-2
dc.relationIsaacson, B., Hadad, T., Bachrach, G., & Mandelboim, O. (2018). Quantification of Bacterial Attachment to Tissue Sections. Bio-Protocol, 8(5). https://doi.org/10.21769/BIOPROTOC.2741
dc.relationJaafar, R. S., Al-Knany, F. N., Mahdi, B. A., & Al-Taee, A. M. R. (2019). Study the probiotic properties of pediococcus pentosaceus isolated from fish ponds in basra city, south of Iraq. Journal of Pure and Applied Microbiology, 13(4), 2343–2351. https://doi.org/10.22207/JPAM.13.4.50
dc.relationJang, Y. J., Gwon, H. M., Jeong, W. S., Yeo, S. H., & Kim, S. Y. (2021). Safety evaluation of weissella cibaria jw15 by phenotypic and genotypic property analysis. Microorganisms, 9(12). https://doi.org/10.3390/microorganisms9122450
dc.relationJatmiko, Y. D., Howarth, G. S., & Barton, M. D. (2017). Assessment of probiotic properties of lactic acid bacteria isolated from Indonesian naturally fermented milk. AIP Conference Proceedings, 1908(1), 50008. https://doi.org/10.1063/1.5012732
dc.relationJessie Lau, L. Y., & Chye, F. Y. (2018). Antagonistic effects of Lactobacillus plantarum 0612 on the adhesion of selected foodborne enteropathogens in various colonic environments. Food Control. https://doi.org/10.1016/j.foodcont.2018.04.001
dc.relationJia, K., Tong, X., Wang, R., & Song, X. (2018). The clinical effects of probiotics for inflammatory bowel disease: A meta-analysis. Medicine, 97(51), e13792. https://doi.org/10.1097/MD.0000000000013792
dc.relationJiang, S., Cai, L., Lv, L., & Li, L. (2021). Pediococcus pentosaceus, a future additive or probiotic candidate. 20(1), 1–14. https://doi.org/10.1186/S12934-021-01537-Y
dc.relationJung, S. H., Hong, D. K., Bang, S. J., Heo, K., Sim, J. J., & Lee, J. L. (2021). The functional properties of lactobacillus casei hy2782 are affected by the fermentation time. Applied Sciences (Switzerland), 11(6). https://doi.org/10.3390/app11062481
dc.relationKang, M. S., Na, H. S., & Oh, J. S. (2005). Coaggregation ability of Weissella cibaria isolates with Fusobacterium nucleatum and their adhesiveness to epithelial cells. FEMS Microbiology Letters, 253(2), 323–329. https://doi.org/10.1016/j.femsle.2005.10.002
dc.relationKang, M. S., Piao, M., Shin, B. A., Lee, H. C., & Oh, J. S. (2006). Adhesion of Weissella cibaria to the epithelial cells and factors affecting its adhesion. Journal of Bacteriology and Virology, 36(3), 151–157. https://doi.org/10.4167/JBV.2006.36.3.151
dc.relationKarki, G. (2017). Genus Streptococcus: habitat, morphology, culture and biochemical characteristics - Online Biology Notes. Onlinebiologynotes. https://www.onlinebiologynotes.com/genus-streptococcus-habitat-morphology-culture-biochemical-characteristics/
dc.relationKatsikogianni, M., Missirlis, Y. F., Harris, L., & Douglas, J. (2004). Concise review of mechanisms of bacterial adhesion to biomaterials and of techniques used in estimating bacteria-material interactions. European Cells and Materials, 8, 37–57. https://doi.org/10.22203/eCM.v008a05
dc.relationKaur, G., & Dufour, J. M. (2012). Cell lines. Spermatogenesis, 2(1), 1–5. https://doi.org/10.4161/spmg.19885
dc.relationKavitake, D., Devi, P. B., & Shetty, P. H. (2020). Overview of exopolysaccharides produced by Weissella genus – A review. International Journal of Biological Macromolecules, 164, 2964–2973. https://doi.org/10.1016/j.ijbiomac.2020.08.185
dc.relationKayode Titus, A. (2018). Prolonged heat stress of Lactobacillus casei GCRL163 and the impact on the cell physiology and probiotic functionality using proteomics. Universidad de Tasmania.
dc.relationKeyhani, G., Hosseini, H. M., & Salimi, A. (2022). Effect of extracellular vesicles of Lactobacillus rhamnosus GG on the expression of CEA gene and protein released by colorectal cancer cells. Iranian Journal of Microbiology, 14(1), 90. https://doi.org/10.18502/IJM.V14I1.8809
dc.relationKhalil, E. S., Manap, M. Y., Mustafa, S., Amid, M., Alhelli, A. M., & Aljoubori, A. (2018). Probiotic characteristics of exopolysaccharides-producing Lactobacillus isolated from some traditional Malaysian fermented foods. Journal of Foods, 16(1), 287–298. https://doi.org/10.1080/19476337.2017.1401007
dc.relationKim, E., Yang, S. M., Kim, D., & Kim, H. Y. (2022). Complete Genome Sequencing and Comparative Genomics of Three Potential Probiotic Strains, Lacticaseibacillus casei FBL6, Lacticaseibacillus chiayiensis FBL7, and Lacticaseibacillus zeae FBL8. Frontiers in Microbiology, 12, 4135. https://doi.org/10.3389/fmicb.2021.794315
dc.relationKlotz, C., Goh, Y. J., O’Flaherty, S., & Barrangou, R. (2020). S-layer associated proteins contribute to the adhesive and immunomodulatory properties of Lactobacillus acidophilus NCFM. BMC Microbiology, 20(1). https://doi.org/10.1186/s12866-020-01908-2
dc.relationKnobloch, D., Ostermann, K., & Rödel, G. (2012). Production, Secretion, and Cell Surface Display of Recombinant Sporosarcina ureae S-Layer Fusion Proteins in Bacillus megaterium. Applied and Environmental Microbiology, 78(2), 560. https://doi.org/10.1128/AEM.06127-11
dc.relationKnutsen, T., Padilla-Nash, H. M., Wangsa, D., Barenboim-Stapleton, L., Camps, J., McNeil, N., Difilippantonio, M. J., & Ried, T. (2010). Definitive molecular cytogenetic characterization of 15 colorectal cancer cell lines. Genes Chromosomes and Cancer, 49(3), 204–223. https://doi.org/10.1002/gcc.20730
dc.relationKoirala, S., & Anal, A. K. (2021). Probiotics-based foods and beverages as future foods and their overall safety and regulatory claims. Future Foods, 3, 100013. https://doi.org/10.1016/J.FUFO.2021.100013
dc.relationKrausova, G., Hyrslova, I., & Hynstova, I. (2019). In vitro evaluation of adhesion capacity, hydrophobicity, and auto-aggregation of newly isolated potential probiotic strains. Fermentation, 5(4). https://doi.org/10.3390/fermentation5040100
dc.relationKumar, R., Bansal, P., Singh, J., Dhanda, S., & Bhardwaj, J. K. (2020). Aggregation, adhesion and efficacy studies of probiotic candidate Pediococcus acidilactici NCDC 252: a strain of dairy origin. World Journal of Microbiology and Biotechnology, 36(1), 1–15. https://doi.org/10.1007/s11274-019-2785-8
dc.relationLa Fata, G., Weber, P., & Mohajeri, M. H. (2018). Probiotics and the Gut Immune System: Indirect Regulation. Probiotics and Antimicrobial Proteins, 10(1), 11–21. https://doi.org/10.1007/s12602-017-9322-6
dc.relationLadha, G., & Jeevaratnam, K. (2018). Probiotic Potential of Pediococcus pentosaceus LJR1, a Bacteriocinogenic Strain Isolated from Rumen Liquor of Goat (Capra aegagrus hircus). Food Biotechnology, 32(1), 60–77. https://doi.org/10.1080/08905436.2017.1414700
dc.relationLakra, A. K., Domdi, L., Hanjon, G., Tilwani, Y. M., & Arul, V. (2020). Some probiotic potential of Weissella confusa MD1 and Weissella cibaria MD2 isolated from fermented batter. Lwt, 125(October 2019), 109261. https://doi.org/10.1016/j.lwt.2020.109261
dc.relationLangdon, S. P. (2003). Cancer Cell Culture. In Cancer Cell Culture. Humana Press. https://doi.org/10.1385/1592594069
dc.relationLee, H. K., Choi, S. H., Lee, C. R., Lee, S. H., Park, M. R., Kim, Y., Lee, M. K., & Kim, G. B. (2015). Screening and characterization of lactic acid bacteria strains with anti-inflammatory activities through in vitro and caenorhabditis elegans model testing. Korean Journal for Food Science of Animal Resources, 35(1), 91–100. https://doi.org/10.5851/kosfa.2015.35.1.91
dc.relationLee, Y. (2005). Characterization of Weissella kimchii PL9023 as a potential probiotic for women. FEMS Microbiology Letters, 250(1), 157–162. https://doi.org/10.1016/J.FEMSLE.2005.07.009
dc.relationLi, N., Huang, Y., Liu, Z., You, C., & Guo, B. (2015). Regulation of EPS production in Lactobacillus casei LC2W through metabolic engineering. Letters in Applied Microbiology, 61(6), 555–561. https://doi.org/10.1111/LAM.12492
dc.relationLi, Y., Zhang, T., Guo, C., Geng, M., Gai, S., Qi, W., Li, Z., Song, Y., Luo, X., Zhang, T., & Wang, N. (2020). Bacillus subtilis RZ001 improves intestinal integrity and alleviates colitis by inhibiting the Notch signalling pathway and activating ATOH-1. Pathogens and Disease, 78(2). https://doi.org/10.1093/FEMSPD/FTAA016
dc.relationLiu, C., Han, F., Cong, L., Sun, T., Menghe, B., & Liu, W. (2022). Evaluation of tolerance to artificial gastroenteric juice and fermentation characteristics of Lactobacillus strains isolated from human. Food Science & Nutrition, 10(1), 227–238. https://doi.org/10.1002/FSN3.2662
dc.relationLiu, M., Ding, J., Zhang, H., Shen, J., Hao, Y., Zhang, X., Qi, W., Luo, X., Zhang, T., & Wang, N. (2020). Lactobacillus casei LH23 modulates the immune response and ameliorates DSS-induced colitis via suppressing JNK/p-38 signal pathways and enhancing histone H3K9 acetylation. Food and Function, 11(6), 5473–5485. https://doi.org/10.1039/d0fo00546k
dc.relationLiu, Q., Yu, Z., Tian, F., Zhao, J., Zhang, H., Zhai, Q., & Chen, W. (2020). Surface components and metabolites of probiotics for regulation of intestinal epithelial barrier. Microbial Cell Factories, 19(1), 1–11. https://doi.org/10.1186/s12934-020-1289-4
dc.relationLlamas-Arriba, M. G., Hernández-Alcántara, A. M., Mohedano, M. L., Chiva, R., Celador-Lera, L., Velázquez, E., Prieto, A., Dueñas, M. T., Tamame, M., & López, P. (2021). Lactic acid bacteria isolated from fermented doughs in Spain produce dextrans and riboflavin. Foods, 10(9), 1–20. https://doi.org/10.3390/foods10092004
dc.relationLondoño-Zapata, A. F., Durango-Zuleta, M. M., Sepúlveda-Valencia, J. U., & Moreno Herrera, C. X. (2017). Characterization of lactic acid bacterial communities associated with a traditional Colombian cheese: Double cream cheese. LWT - Food Science and Technology, 82, 39–48. https://doi.org/10.1016/J.LWT.2017.03.058
dc.relationLonvaud-Funel, A. (2014). Leuconostocaceae Family. In C. A. Batt & M. Lou Tortorello (Eds.), Encyclopedia of Food Microbiology (Second Edition) (Second Edi, pp. 455–465). Academic Press. https://doi.org/https://doi.org/10.1016/B978-0-12-384730-0.00185-3
dc.relationLorenzo, J. M., Munekata, P. E., Dominguez, R., Pateiro, M., Saraiva, J. A., & Franco, D. (2018). Main Groups of Microorganisms of Relevance for Food Safety and Stability: General Aspects and Overall Description. Innovative Technologies for Food Preservation: Inactivation of Spoilage and Pathogenic Microorganisms, 53–107. https://doi.org/10.1016/B978-0-12-811031-7.00003-0
dc.relationLuan, C., Jiang, N., Zhou, X., Zhang, C., Zhao, Y., Li, Z., & Li, C. (2022). Antibacterial and anti-biofilm activities of probiotic Lactobacillus curvatus BSF206 and Pediococcus pentosaceus AC1-2 against Streptococcus mutans. Microbial Pathogenesis, 164, 105446. https://doi.org/https://doi.org/10.1016/j.micpath.2022.105446
dc.relationLuis, P., Arroyo, C., Augusto, C., Hurtado, B., & Pardo Pérez, E. (2018). CHARACTERIZATION OF MICROORGANISMS WITH PROBIOTIC POTENTIAL ISOLATED FROM BRAHMAN CALF MANURE IN SUCRE, COLOMBIA. Rev Inv Vet Perú, 29(2), 438–448. https://doi.org/10.15381/rivep.v29i2.14482
dc.relationLv, L. X., Li, Y. D., Hu, X. J., Shi, H. Y., & Li, L. J. (2014). Whole genome sequence assembly of Pediococcus pentosaceus LI05 (CGMCC 7049) from the human gastrointestinal tract and comparative analysis with representative sequences from three food-borne strains. Gut Pathogens, 6(1), 36. https://doi.org/10.1186/s13099-014-0036-y
dc.relationMa, J., Yu, W., Hou, J., Han, X., Shao, H., & Liu, Y. (2020). Characterization and production optimization of a broad-spectrum bacteriocin produced by Lactobacillus casei KLDS 1.0338 and its application in soybean milk biopreservation. International Journal of Food Properties, 23(1), 677–692. https://doi.org/10.1080/10942912.2020.1751656
dc.relationMaamer-Azzabi, A., Ndozangue-Touriguine, O., & Bréard, J. (2013). Metastatic SW620 colon cancer cells are primed for death when detached and can be sensitized to anoikis by the BH3-mimetic ABT-737. Cell Death & Disease, 4(9), e801. https://doi.org/10.1038/CDDIS.2013.328
dc.relationMahmoudi, I., Moussa, O. Ben, Khaldi, T., Kebouchi, M., Roux, Y. Le, Hassouna, M., Mahmoudi, I., Moussa, O. Ben, Khaldi, T., Kebouchi, M., Soligot-hognon, C., Mahmoudi, I., Moussa, O. Ben, Khaldi, T. E., & Kebouchi, M. (2022). Adhesion Properties of Probiotic Lactobacillus Strains Isolated from Tunisian Sheep and Goat Milk To cite this version : HAL Id : hal-03611850 Adhesion Properties of Probiotic Lactobacillus Strains Isolated from Tunisian Sheep and Goat Milk.
dc.relationMantzourani, I., Chondrou, P., Bontsidis, C., Karolidou, K., Terpou, A., Alexopoulos, A., Bezirtzoglou, E., Galanis, A., & Plessas, S. (2019). Assessment of the probiotic potential of lactic acid bacteria isolated from kefir grains: evaluation of adhesion and antiproliferative properties in in vitro experimental systems. Annals of Microbiology, 69(7), 751–763. https://doi.org/10.1007/s13213-019-01467-6
dc.relationMarchwińska, K., & Gwiazdowska, D. (2022). Isolation and probiotic potential of lactic acid bacteria from swine feces for feed additive composition. 204, 61. https://doi.org/10.1007/s00203-021-02700-0
dc.relationMarques, J. de L., Funck, G. D., Dannenberg, G. da S., Ames, C. W., Vitola, H. R. S., Borchardt, J. L., Cruxen, C. E. dos S., Leite, F. P. L., Fiorentini, Â. M., & da Silva, W. P. (2022). Evaluation of probiotic potential of Pediococcus pentosaceus isolates and application in Minas Frescal cheese. Journal of Food Processing and Preservation, 46(1). https://doi.org/10.1111/jfpp.16166
dc.relationMcAuliffe, O. (2017). Genetics of Lactic Acid Bacteria. In Cheese (pp. 227–247). Elsevier. https://doi.org/10.1016/B978-0-12-417012-4.00009-0
dc.relationMilanovic, V., Osimani, A., Garofalo, C., Belleggia, L., Maoloni, A., Cardinali, F., Mozzon, M., Foligni, R., Aquilanti, L., & Clementi, F. (2020). Selection of cereal-sourced lactic acid bacteria as candidate starters for the baking industry. Plos One, 15(7 July), 1–21. https://doi.org/10.1371/journal.pone.0236190
dc.relationMohanty, D., Panda, S., Kumar, S., & Ray, P. (2019). In vitro evaluation of adherence and anti-infective property of probiotic Lactobacillus plantarum DM 69 against Salmonella enterica. Microbial Pathogenesis, 126, 212–217. https://doi.org/10.1016/j.micpath.2018.11.014
dc.relationMokhtar, N. M., Wong, K., Affendi Raja Ali, R., Jian, T. W., Mokhtar, N. M., Raja Ali, R. A., Ken, W. K., Wong, K., & Affendi Raja Ali, R. (2018). Manipulation of Gut Microbiota in Vitro Model of Colorectal Cancer: Strong Adherence Ability of Lactobacillus Rhamnosus. Gut, 67(Suppl 1), A23--A23. https://doi.org/10.1136/gutjnl-2018-IDDFabstracts.130
dc.relationMonteagudo-Mera, A., Rastall, R. A., Gibson, G. R., Charalampopoulos, D., & Chatzifragkou, A. (2019). Adhesion mechanisms mediated by probiotics and prebiotics and their potential impact on human health. Applied Microbiology and Biotechnology. https://doi.org/10.1007/s00253-019-09978-7
dc.relationMorovic, W., & Budinoff, C. R. (2021). Epigenetics: A New Frontier in Probiotic Research. Trends in Microbiology, 29(2), 117–126. https://doi.org/10.1016/J.TIM.2020.04.008
dc.relationMuñoz-Provencio, D., Pérez-Martínez, G., & Monedero, V. (2010). Characterization of a fibronectin-binding protein from Lactobacillus casei BL23. Journal of Applied Microbiology, 108(3), 1050–1059. https://doi.org/10.1111/j.1365-2672.2009.04508.x
dc.relationNghe, D., & Nguyen, T. (2014). Characterization of Antimicrobial Activities of Pediococcus pentosaceus Vtcc-B-601 ARTICLE INFO ABSTRACT. Journal of Applied Pharmaceutical Science, 4(05), 61–064. https://doi.org/10.7324/JAPS.2014.40511
dc.relationNonaka, T., & Wong, D. T. W. (2017). Saliva-Exosomics in Cancer: Molecular Characterization of Cancer-Derived Exosomes in Saliva (pp. 125–151).
dc.relationNovoa, C. F., & Lopéz, N. (2008). Evaluación de la vida útil sensorial del queso doble crema con dos niveles de grasa. Rev. Med. Vet. Zoot., 55, 91–99.
dc.relationNwoko, E. S. Q. A., & Okeke, I. N. (2021). Bacteria autoaggregation: How and why bacteria stick together. Biochemical Society Transactions, 49(3), 1147–1157. https://doi.org/10.1042/BST20200718
dc.relationO’bryan, C. A., Koo, O. K., Sostrin, M. L., Ricke, S. C., Crandall, P. G., & Johnson, M. G. (2018). Chapter 15 - Characteristics of Bacteriocins and Use as Food Antimicrobials in the United States. https://doi.org/10.1016/B978-0-12-811835-1.00015-4
dc.relationOh, Y. J., & Jung, D. S. (2015). Evaluation of probiotic properties of Lactobacillus and Pediococcus strains isolated from Omegisool, a traditionally fermented milletalcoholic beverage in Korea. Lwt, 63(1), 437–444. https://doi.org/10.1016/j.lwt.2015.03.005
dc.relationOhkusa, T., Yoshida, T., Sato, N., Watanabe, S., Tajiri, H., & Okayasu, I. (2009). Commensal bacteria can enter colonic epithelial cells and induce proinflammatory cytokine secretion: a possible pathogenic mechanism of ulcerative colitis. Journal of Medical Microbiology, 58(Pt 5), 535–545. https://doi.org/10.1099/JMM.0.005801-0
dc.relationOkonkwo, C. C. (2017). Process development and metabolic engineering to enhance 2 , 3- butanediol production by Paenibacillus polymyxa DSM 365. Ohio State University.
dc.relationOrtiz Balderas, M. (2006). Identificación bioquímica de Bacterias Ácido Lácticas aisladas a partir de productos lácteos en el estado de Hidalgo [Universidad Autónoma del Estado de Hidalgo]. https://repository.uaeh.edu.mx/bitstream/bitstream/handle/123456789/10741/Identificacion bioquimica.pdf?sequence=1&isAllowed=y
dc.relationOsorio, D. P., Novoa, C. F., & Gutiérrez, L. F. (2012). Determinación de la viabilidad de la nariz electrónica en la predicción de la vida útil del queso doble crema. Alimentos Hoy, 21(26), 26–42. http://www.alimentoshoy.acta.org.co/index.php/hoy/article/view/120/114
dc.relationOuwehand, A. C., Forssten, S., Hibberd, A. A., Lyra, A., & Stahl, B. (2016). Probiotic approach to prevent antibiotic resistance. Https://Doi.Org/10.3109/07853890.2016.1161232, 48(4), 246–255. https://doi.org/10.3109/07853890.2016.1161232
dc.relationOuwehand, A. C., & Salminen, S. (2003). In vitro Adhesion Assays for Probiotics and their in vivo Relevance: A Review. Microbial Ecology in Health and Disease, 15(4), 175–184. https://doi.org/10.1080/08910600310019886
dc.relationOzen, M., & Dinleyici, E. C. (2015). The history of probiotics: the untold story. Beneficial Microbes, 6(2), 159–165. https://doi.org/10.3920/BM2014.0103
dc.relationPark, S. H., Kim, Y. A., Chung, M. J., Kang, B. Y., & Ha, N. J. (2007). Inhibition of Proliferation by Anti-microbial Peptide Isolated from Pediococcus pentosaceus and Lactobacillus spp. in Colon Cancer Cell Line (HT-29, SW 480 and Caco-2).
dc.relationParma Augusto Castilho, N. DE. (2018). BACTERIOCINOGENIC POTENTIAL OF LACTIC ACID BACTERIA ISOLATES FROM ARTISANAL FERMENTED MEAT PRODUCTS. Universidade Federal de Viçosa.
dc.relationPatrone, V., Al-Surrayai, T., Romaniello, F., Fontana, A., Milani, G., Sagheddu, V., Puglisi, E., Callegari, M. L., Al-Mansour, H., Kishk, M. W., & Morelli, L. (2021). Integrated Phenotypic-Genotypic Analysis of Candidate Probiotic Weissella Cibaria Strains Isolated from Dairy Cows in Kuwait. Probiotics and Antimicrobial Proteins, 13(3), 809–823. https://doi.org/10.1007/S12602-020-09715-X/TABLES/4
dc.relationPavkov-Keller, T., Howorka, S., & Keller, W. (2011). The structure of bacterial S-layer proteins. Progress in Molecular Biology and Translational Science, 103, 73–130. https://doi.org/10.1016/B978-0-12-415906-8.00004-2
dc.relationPellegrino, M. S., Frola, I. D., Natanael, B., Gobelli, D., Nader-Macias, M. E. F., & Bogni, C. I. (2019). In Vitro Characterization of Lactic Acid Bacteria Isolated from Bovine Milk as Potential Probiotic Strains to Prevent Bovine Mastitis. Probiotics and Antimicrobial Proteins, 11(1), 74–84. https://doi.org/10.1007/s12602-017-9383-6
dc.relationPérez-Ramos, A., Mohedano, M. L., Puertas, A., Lamontanara, A., Orru, L., Spano, G., Capozzi, V., Teresa Dueñas, M., & López, P. (2016). Draft genome sequence of Pediococcus parvulus 2.6, a probiotic β-glucan producer strain. Genome Announcements, 4(6). https://doi.org/10.1128/GENOMEA.01381-16
dc.relationPino, A., Bartolo, E., Caggia, C., Cianci, A., & Randazzo, C. L. (2019). Detection of vaginal lactobacilli as probiotic candidates. Scientific Reports, 9(1), 1–10. https://doi.org/10.1038/s41598-019-40304-3
dc.relationPisano, M. B., Rosa, A., Putzu, D., Cesare Marincola, F., Mossa, V., Viale, S., Fadda, M. E., & Cosentino, S. (2020). Influence of Autochthonous Putative Probiotic Cultures on Microbiota, Lipid Components and Metabolome of Caciotta Cheese. Frontiers in Microbiology, 11, 2620. https://doi.org/10.3389/FMICB.2020.583745/BIBTEX
dc.relationPlaza-Diaz, J., Ruiz-Ojeda, F. J., Gil-Campos, M., & Gil, A. (2019). Mechanisms of Action of Probiotics. Advances in Nutrition, 10(suppl_1), S49–S66. https://doi.org/10.1093/advances/nmy063
dc.relationRahman, M., Kim, W.-S., Kumura, H., & Shimazaki, K. (2008). Autoaggregation and surface hydrophobicity of bifidobacteria. World Journal of Microbiology and Biotechnology, 24, 1593–1598. https://doi.org/10.1007/s11274-007-9650-x
dc.relationRamírez Ramírez, C., Rosas Ulloa, P., Velázquez González, M. Y., Ulloa, J. A., & Arce Romero, F. (2011). Bacterias lácticas: Importancia en alimentos y sus efectos en la salud. Revista Fuente, 2(7), 1–16. http://fuente.uan.edu.mx/publicaciones/03-07/1.pdf
dc.relationRavi, J., & Fioravanti, A. (2021). S-layers: The Proteinaceous Multifunctional Armors of Gram-Positive Pathogens. Frontiers in Microbiology, 12, 685. https://doi.org/10.3389/FMICB.2021.663468/BIBTEX
dc.relationReale, A., Di Renzo, T., Rossi, F., Zotta, T., Iacumin, L., Preziuso, M., Parente, E., Sorrentino, E., & Coppola, R. (2015). Tolerance of Lactobacillus casei, Lactobacillus paracasei and Lactobacillus rhamnosus strains to stress factors encountered in food processing and in the gastro-intestinal tract. Lwt, 60(2), 721–728. https://doi.org/10.1016/j.lwt.2014.10.022
dc.relationRehaiem, A., Belgacem, Z. Ben, Edalatian, M. R., Martínez, B., Rodríguez, A., Manai, M., & Guerra, N. P. (2014). Assessment of potential probiotic properties and multiple bacteriocin encoding-genes of the technological performing strain Enterococcus faecium MMRA. Food Control, 37, 343–350. https://doi.org/10.1016/j.foodcont.2013.09.044
dc.relationReuben, R. C., Roy, P. C., Sarkar, S. L., Rubayet Ul Alam, A. S. M., & Jahid, I. K. (2020). Characterization and evaluation of lactic acid bacteria from indigenous raw milk for potential probiotic properties. Journal of Dairy Science, 103(2), 1223–1237. https://doi.org/10.3168/JDS.2019-17092
dc.relationRingot-Destrez, B., Kalach, N., Mihalache, A., Gosset, P., Michalski, J. C., Léonard, R., & Robbe-Masselot, C. (2017). How do they stick together? Bacterial adhesins implicated in the binding of bacteria to the human gastrointestinal mucins. Biochemical Society Transactions, 45(2), 389–399. https://doi.org/10.1042/BST20160167
dc.relationRohith, H. S., & Halami, P. M. (2021). In vitro validation studies for adhesion factor and adhesion efficiency of probiotic Bacillus licheniformis MCC 2514 and Bifidobacterium breve NCIM 5671 on HT-29 cell lines. Archives of Microbiology, 203(6), 2989–2998. https://doi.org/10.1007/S00203-021-02257-Y
dc.relationRubio, A. P. D., Martínez, J. H., Casillas, D. C. M., Leskow, F. C., Piuri, M., & Pérez, O. E. (2017). Lactobacillus casei BL23 produces microvesicles carrying proteins that have been associated with its probiotic effect. Frontiers in Microbiology, 8(SEP), 1–12. https://doi.org/10.3389/fmicb.2017.01783
dc.relationRuiz, A. G., González De Llano, D., Fernández, A. E., Rolanía, T. R., Sualdea, B. B., & Moreno Arribas, M. V. (2014). Evaluación de las propiedades probióticas de bacterias lácticas de origen enológico. Alimentación, Nutrición y Salud, 21(2), 28–34.
dc.relationRuiz, L., Margolles, A., & Sánchez, B. (2013). Bile resistance mechanisms in Lactobacillus and Bifidobacterium. Frontiers in Microbiology, 4, 396. https://doi.org/10.3389/fmicb.2013.00396
dc.relationSafika, S., Wardinal, W., Ismail, Y. S., Nisa, K., & Sari, W. N. (2019). Weissella, a novel lactic acid bacteria isolated from wild Sumatran orangutans (Pongo abelii). Veterinary World, 12(7), 1060–1065. https://doi.org/10.14202/vetworld.2019.1060-1065
dc.relationSánchez, B., Salazar Garzo, N., & Margolles, A. (2018). La microbiota intestinal.
dc.relationSánchez, J. F. (2019). Caracterización molecular de bacterias ácido lácticas aisladas de frutos procedentes de la Región Loreto. 124. https://cybertesis.unmsm.edu.pe/bitstream/handle/20.500.12672/10767/Sanchez_dj.pdf?sequence=1&isAllowed=y
dc.relationSanders, M. E., Akkermans, L. M. A., Haller, D., Hammerman, C., Heimbach, J., Hörmannsperger, G., Huys, G., Levy, D. D., Lutgendorff, F., Mack, D., Phothirath, P., Solano-Aguilar, G., & Vaughan, E. (2010). Safety assessment of probiotics for human use. Gut Microbes, 1(3), 164–185. https://doi.org/10.4161/gmic.1.3.12127
dc.relationSegers, M. E., & Lebeer, S. (2014). Towards a better understanding of Lactobacillus rhamnosus GG--host interactions. Microbial Cell Factories, 13 Suppl 1, S7. https://doi.org/10.1186/1475-2859-13-S1-S7
dc.relationSerna-Cock, L., Pabón-Rodríguez, O. V., & Giraldo-Gómez, G. I. (2019). Adhesion Capacity of Weissella cibaria to Bovine Mammary Tissue and the Effect of Bio-Sealant Topical Application on Physicochemical Properties of Milk. Probiotics and Antimicrobial Proteins, 11(4), 1293–1299. https://doi.org/10.1007/s12602-018-9481-0
dc.relationSharma, C., Gulati, S., Thakur, N., Singh, B. P., Gupta, S., Kaur, S., Mishra, S. K., Puniya, A. K., Gill, J. P. S., & Panwar, H. (2017). Antibiotic sensitivity pattern of indigenous lactobacilli isolated from curd and human milk samples. 3 Biotech, 7(1), 53. https://doi.org/10.1007/s13205-017-0682-0
dc.relationSharma, L., & Riva, A. (2020). Intestinal barrier function in health and disease—any role of sars‐cov‐2? Microorganisms, 8(11), 1–27. https://doi.org/10.3390/microorganisms8111744
dc.relationSharma, R. (2021, May 18). Kirby Bauer Disc Diffusion Method For Antibiotic Susceptibility Testing. https://microbenotes.com/kirby-bauer-disc-diffusion/
dc.relationSharma, S., & Kanwar, S. S. (2017). Adherence potential of indigenous lactic acid bacterial isolates obtained from fermented foods of Western Himalayas to intestinal epithelial Caco-2 and HT-29 cell lines. Journal of Food Science and Technology, 54(11), 3504–3511. https://doi.org/10.1007/s13197-017-2807-1
dc.relationShin, M., Ban, O. H., Jung, Y. H., Yang, J., & Kim, Y. (2021). Genomic characterization and probiotic potential of Lactobacillus casei IDCC 3451 isolated from infant faeces. Letters in Applied Microbiology, 72(5), 578–588. https://doi.org/10.1111/LAM.13449
dc.relationSica, M. G. (2013). Bacterias lácticas del estuario de Bahía Blanca : evaluación de sus propiedades probióticas para su potencial uso en el cultivo de trucha arcoíris (Oncorhynchus mykiss). Universidad Nacional del Sur Bahía Blanca.
dc.relationSigma-Aldrich. (2021a). SW 620 Cell Line human. https://www.sigmaaldrich.com/CO/es/product/sigma/cb_87051203
dc.relationSigma-Aldrich. (2021b). SW480 Cell Line human 87092801 . https://www.sigmaaldrich.com/CO/es/product/sigma/cb_87092801
dc.relationSingh, B., Fleury, C., Jalalvand, F., & Riesbeck, K. (2012). Human pathogens utilize host extracellular matrix proteins laminin and collagen for adhesion and invasion of the host. FEMS Microbiology Reviews, 36(6), 1122–1180. https://doi.org/10.1111/j.1574-6976.2012.00340.x
dc.relationSingh, K. S., Kumar, S., Mohanty, A. K., Grover, S., & Kaushik, J. K. (2018). Mechanistic insights into the host-microbe interaction and pathogen exclusion mediated by the Mucus-binding protein of Lactobacillus plantarum. Scientific Reports 2018 8:1, 8(1), 1–10. https://doi.org/10.1038/s41598-018-32417-y
dc.relationSingh, T. P., Malik, R. K., & Kaur, G. (2016). Cell surface proteins play an important role in probiotic activities of Lactobacillus reuteri. Nutrire, 41(1), 1–10. https://doi.org/10.1186/s41110-016-0007-9
dc.relationSingla, V., Mandal, S., Sharma, P., Anand, S., & Tomar, S. K. (2018). Antibiotic susceptibility profile of Pediococcus spp. from diverse sources. 3 Biotech, 8(12), 489. https://doi.org/10.1007/S13205-018-1514-6
dc.relationSireswar, S., Biswas, S., & Dey, G. (2020). Adhesion and anti-inflammatory potential of: Lactobacillus rhamnosus GG in a sea buckthorn based beverage matrix. Food and Function, 11(3), 2555–2572. https://doi.org/10.1039/C9FO02249J
dc.relationSlater, C., De La Mare, J. A., & Edkins, A. L. (2018). In vitro analysis of putative cancer stem cell populations and chemosensitivity in the SW480 and SW620 colon cancer metastasis model. Oncology Letters, 15(6), 8516–8526. https://doi.org/10.3892/ol.2018.8431
dc.relationSmith, A. C., & Hussey, M. A. (2019). Gram Stain Protocols. https://asm.org/Protocols/Gram-Stain-Protocols
dc.relationSong, X., Xiong, Z., Kong, L., Wang, G., & Ai, L. (2018). Relationship between putative eps genes and production of exopolysaccharide in lactobacillus casei LC2W. Frontiers in Microbiology, 9(AUG). https://doi.org/10.3389/fmicb.2018.01882
dc.relationSong, Y. R., Lee, C. M., Lee, S. H., & Baik, S. H. (2021). Evaluation of probiotic properties of pediococcus acidilactici m76 producing functional exopolysaccharides and its lactic acid fermentation of black raspberry extract. Microorganisms, 9(7). https://doi.org/10.3390/microorganisms9071364
dc.relationSrimahaeak, T., Bianchi, F., Chlumsky, O., Larsen, N., & Jespersen, L. (2021). In-vitro study of Limosilactobacillus fermentum PCC adhesion to and integrity of the Caco-2 cell monolayers as affected by pectins. Journal of Functional Foods, 79, 104395. https://doi.org/10.1016/j.jff.2021.104395
dc.relationStrober, W. (2015). Trypan Blue Exclusion Test of Cell Viability. Current Protocols in Immunology / Edited by John E. Coligan ... [et al.], 111, A3.B.1-A3.B.3. https://doi.org/10.1002/0471142735.ima03bs111
dc.relationSubramaniyan, V., & Gurumurthy, K. (2019). Diversity of probiotic adhesion genes in the gastrointestinal tract of goats. Journal of Cellular Biochemistry, 120(8), 12422–12428. https://doi.org/10.1002/jcb.28508
dc.relationSuhonen, A. (2019). Antibiotic Susceptibility of Lactic Acid Bacteria [University of Helsinki]. http://www.helsinki.fi/kirjasto/fi/avuksi/yliopiston-julkaisut/e-thesis/
dc.relationSuissa, R., Oved, R., Jankelowitz, G., Turjeman, S., Koren, O., & Kolodkin-Gal, I. (2022). Molecular genetics for probiotic engineering: dissecting lactic acid bacteria. In Trends in Microbiology (Vol. 30, Issue 3, pp. 293–306). Elsevier Current Trends. https://doi.org/10.1016/j.tim.2021.07.007
dc.relationSultan, I., Rahman, S., Jan, A. T., Siddiqui, M. T., Mondal, A. H., & Haq, Q. M. R. (2018). Antibiotics, resistome and resistance mechanisms: A bacterial perspective. Frontiers in Microbiology, 9(SEP), 2066. https://doi.org/10.3389/FMICB.2018.02066/BIBTEX
dc.relationSurat, P. (2018, August 24). pH in the Human Body. News Medical Life Sciences. https://www.news-medical.net/health/pH-in-the-Human-Body.aspx
dc.relationSuwannaphan, S. (2021). Isolation, identification and potential probiotic characterization of lactic acid bacteria from thai traditional fermented food. AIMS Microbiology, 7(4), 431–446. https://doi.org/10.3934/MICROBIOL.2021026
dc.relationTankeshwar, A. (2013, October 7). Catalase test: Principle, Procedure, Results and Applications. Learn Microbiology Online. https://microbeonline.com/catalase-test-principle-uses-procedure-results/
dc.relationTarrah, A., da Silva Duarte, V., de Castilhos, J., Pakroo, S., Lemos Junior, W. J. F., Luchese, R. H., Fioravante Guerra, A., Rossi, R. C., Righetto Ziegler, D., Corich, V., & Giacomini, A. (2019). Probiotic potential and biofilm inhibitory activity of Lactobacillus casei group strains isolated from infant feces. Journal of Functional Foods, 54, 489–497. https://doi.org/10.1016/J.JFF.2019.02.004
dc.relationTeame, T., Wang, A., Xie, M., Zhang, Z., Yang, Y., Ding, Q., Gao, C., Olsen, R. E., Ran, C., & Zhou, Z. (2020). Paraprobiotics and Postbiotics of Probiotic Lactobacilli, Their Positive Effects on the Host and Action Mechanisms: A Review. Frontiers in Nutrition, 7, 191. https://doi.org/10.3389/FNUT.2020.570344/BIBTEX
dc.relationTeixeira, C. G., Silva, R. R. da, Fusieger, A., Martins, E., Freitas, R. de, & Carvalho, A. F. de. (2021). O gênero Weissella na indústria de alimentos: Uma revisão. Research, Society and Development, 10(5), e8310514557. https://doi.org/10.33448/rsd-v10i5.14557
dc.relationTerpou, A., Papadaki, A., Lappa, I. K., Kachrimanidou, V., Bosnea, L. A., & Kopsahelis, N. (2019). Probiotics in Food Systems: Significance and Emerging Strategies Towards Improved Viability and Delivery of Enhanced Beneficial Value. Nutrients, 11(7). https://doi.org/10.3390/NU11071591
dc.relationThao, T. T. P., Thoa, L. T. K., Ngoc, L. M. T., Lan, T. T. P., Phuong, T. V., Truong, H. T. H., Khoo, K. S., Manickam, S., Hoa, T. T., Tram, N. D. Q., Show, P. L., & Huy, N. D. (2021). Characterization halotolerant lactic acid bacteria Pediococcus pentosaceus HN10 and in vivo evaluation for bacterial pathogens inhibition. Chemical Engineering and Processing - Process Intensification, 168(January), 108576. https://doi.org/10.1016/j.cep.2021.108576
dc.relationThursby, E., & Juge, N. (2017). Introduction to the human gut microbiota. The Biochemical Journal, 474(11), 1823–1836. https://doi.org/10.1042/BCJ20160510
dc.relationTidjani Alou, M., Lagier, J.-C., & Raoult, D. (2016). Diet influence on the gut microbiota and dysbiosis related to nutritional disorders. Human Microbiome Journal, 1, 3–11. https://doi.org/10.1016/J.HUMIC.2016.09.001
dc.relationTodhanakasem, T., Triwattana, K., Pom, J., Havanapan, P., Koombhongse, P., & Thitisak, P. (2021). Physiological studies of the Pediococcus pentosaceus biofilm. Letters in Applied Microbiology, 72(2), 178–186. https://doi.org/10.1111/LAM.13351
dc.relationTuo, Y., Yu, H., Ai, L., Wu, Z., Guo, B., & Chen, W. (2013). Aggregation and adhesion properties of 22 Lactobacillus strains. Journal of Dairy Science, 96(7), 4252–4257. https://doi.org/10.3168/jds.2013-6547
dc.relationTurnbull, P. C. B. (1996). Bacillus. In Medical Microbiology (4th ed.). University of Texas Medical Branch at Galveston. http://www.ncbi.nlm.nih.gov/pubmed/21413260
dc.relationTuroverova, L. V., Khotin, M. G., Yudintseva, N. M., Magnusson, K. E., Blinova, M. I., Pinaev, G. P., & Tentler, D. G. (2009). Analysis of extracellular matrix proteins produced by cultured cells. Cell and Tissue Biology, 3(5), 497–502. https://doi.org/10.1134/S1990519X09050137
dc.relationUniprot. (2022). UniProtKB - Q03EH8 (Q03EH8_PEDPA). Uniprot.Org. https://www.uniprot.org/uniprot/Q03EH8
dc.relationUniversidad EAFIT, Biointropic, & Silo. (2018). Estudio sobre Bioeconomía como fuente de nuevas industrias basadas en el capital natural de Colombia. Fase II.
dc.relationVanegas, M. F., Londoño Zapata, A., Durango Zuleta, M., Gutiérrez Buriticá, M., Ochoa Agudelo, S., & Sepúlveda Valencia, J. (2017). Capacidad Antimicrobiana de Bacterias Ácido Lácticas autóctonas aisladas de queso doble crema y quesillo colombiano. Biotecnoloía En El Sector Agropecuario y Agroindustrial, 15(1), 45. https://doi.org/10.18684/BSAA(15)45-55
dc.relationVasiee, A., Falah, F., Behbahani, B. A., & Tabatabaee-yazdi, F. (2020). Probiotic characterization of Pediococcus strains isolated from Iranian cereal-dairy fermented product: Interaction with pathogenic bacteria and the enteric cell line Caco-2. Journal of Bioscience and Bioengineering, 130(5), 471–479. https://doi.org/10.1016/j.jbiosc.2020.07.002
dc.relationVélez Zea, J., Gutiérrez Díez, A., & Montoya, O. (2015). Molecular identification and evaluation of the probiotic ability of lacticacid bacteria from sow colostrum. Revista CES Medicina Veterinaria y Zootecnia, 10(2), 141–149.
dc.relationVidhyasagar, V., & Jeevaratnam, K. (2013). Evaluation of Pediococcus pentosaceus strains isolated from Idly batter for probiotic properties in vitro. Journal of Functional Foods, 5(1), 235–243. https://doi.org/10.1016/J.JFF.2012.10.012
dc.relationVinderola, G., Reinheimer, J., & Salminen, S. (2019). The enumeration of probiotic issues: From unavailable standardised culture media to a recommended procedure? International Dairy Journal, 96, 58–65. https://doi.org/10.1016/j.idairyj.2019.04.010
dc.relationVon Ossowski, I., Reunanen, J., Satokari, R., Vesterlund, S., Kankainen, M., Huhtinen, H., Tynkkynen, S., Salminen, S., De Vos, W. M., & Palva, A. (2010). Mucosal adhesion properties of the probiotic Lactobacillus rhamnosus GG SpaCBA and SpaFED pilin subunits. Applied and Environmental Microbiology, 76(7), 2049–2057. https://doi.org/10.1128/AEM.01958-09
dc.relationWang, J., Wang, J., Yang, K., Liu, M., Zhang, J., Wei, X., Fan, M., Wang, J., Yang, K., Liu, M., Zhang, J., Wei, X., & Fan, M. (2018). Screening for potential probiotic from spontaneously fermented non-dairy foods based on in vitro probiotic and safety properties. Annals of Microbiology, 68(12), 803–813. https://doi.org/10.1007/s13213-018-1386-3
dc.relationWang, T., Sun, H., Chen, J., Luo, L., Gu, Y., Wang, X., Shan, Y., Yi, Y., Liu, B., Zhou, Y., & Lü, X. (2021). Anti-Adhesion Effects of Lactobacillus Strains on Caco-2 Cells Against Escherichia Coli and Their Application in Ameliorating the Symptoms of Dextran Sulfate Sodium-Induced Colitis in Mice. Probiotics and Antimicrobial Proteins, 13(6), 1632–1643. https://doi.org/10.1007/S12602-021-09774-8
dc.relationWendel, U. (2022). Assessing Viability and Stress Tolerance of Probiotics—A Review. Frontiers in Microbiology, 12, 4351. https://doi.org/10.3389/FMICB.2021.818468/BIBTEX
dc.relationWu, J. W. F. W., Redondo-Solano, M., Uribe, L., Ching-Jones, R. W., Usaga, J., & Barboza, N. (2021). First characterization of the probiotic potential of lactic acid bacteria isolated from Costa Rican pineapple silages. PeerJ, 9. https://doi.org/10.7717/peerj.12437
dc.relationXiong, L., Ni, X., Niu, L., Zhou, Y., Wang, Q., Khalique, A., Liu, Q., Zeng, Y., Shu, G., Pan, K., Jing, B., & Zeng, D. (2019). Isolation and Preliminary Screening of a Weissella confusa Strain from Giant Panda (Ailuropoda melanoleuca). Probiotics and Antimicrobial Proteins, 11(2), 535–544. https://doi.org/10.1007/S12602-018-9402-2
dc.relationXu, D., Liao, C., Zhang, B., Tolbert, W. D., He, W., Dai, Z., Zhang, W., Yuan, W., Pazgier, M., Liu, J., Yu, J., Sansonetti, P. J., Bevins, C. L., Shao, Y., & Lu, W. (2018). Human Enteric α-Defensin 5 Promotes Shigella Infection by Enhancing Bacterial Adhesion and Invasion. Immunity, 48(6), 1233-1244.e7. https://doi.org/10.1016/J.IMMUNI.2018.04.014
dc.relationXu, X., Peng, Q., Zhang, Y., Tian, D., Zhang, P., Huang, Y., Ma, L., Dia, V. P., Qiao, Y., & Shi, B. (2020). Antibacterial potential of a novel: Lactobacillus casei strain isolated from Chinese northeast sauerkraut and the antibiofilm activity of its exopolysaccharides. Food and Function, 11(5), 4697–4706. https://doi.org/10.1039/d0fo00905a
dc.relationXue, H. B., Liu, C., Liu, Y., Wang, W. N., & Xu, B. (2021). Roles of surface layer proteins in the regulation of Pediococcus pentosaceus on growth performance, intestinal microbiota, and resistance to Aeromonas hydrophila in the freshwater prawn Macrobrachium rosenbergii. Aquaculture International, 29(3), 1373–1391. https://doi.org/10.1007/s10499-021-00704-7
dc.relationYamashita, M. M., Ferrarezi, J. V., Pereira, G. do V., Bandeira, G., Côrrea da Silva, B., Pereira, S. A., Martins, M. L., & Pedreira Mouriño, J. L. (2020). Autochthonous vs allochthonous probiotic strains to Rhamdia quelen. Microbial Pathogenesis, 139, 103897. https://doi.org/10.1016/J.MICPATH.2019.103897
dc.relationYao, Y., Cai, X., Ye, Y., Wang, F., Chen, F., & Zheng, C. (2021). The Role of Microbiota in Infant Health: From Early Life to Adulthood. Frontiers in Immunology, 12, 4114. https://doi.org/10.3389/FIMMU.2021.708472/BIBTEX
dc.relationYe, K., Liu, J., Liu, M., Huang, Y., Wang, K., & Zhou, G. (2018). Effects of two Weissella viridescens strains on Listeria monocytogenes growth at different initial inoculum proportions. CYTA - Journal of Food, 16(1), 299–305. https://doi.org/10.1080/19476337.2017.1401667
dc.relationYin, H., Ye, P., Lei, Q., Cheng, Y., Yu, H., Du, J., Pan, H., & Cao, Z. (2020). In vitro probiotic properties of Pediococcus pentosaceus L1 and its effects on enterotoxigenic Escherichia coli-induced inflammatory responses in porcine intestinal epithelial cells. Microbial Pathogenesis, 144(December 2019), 104163. https://doi.org/10.1016/j.micpath.2020.104163
dc.relationYu, H. S., Jang, H. J., Lee, N. K., & Paik, H. D. (2019). Evaluation of the probiotic characteristics and prophylactic potential of Weissella cibaria strains isolated from kimchi. Lwt, 112(March), 108229. https://doi.org/10.1016/j.lwt.2019.05.127
dc.relationZhang, Y., Xiang, X., Lu, Q., Zhang, L., Ma, F., & Wang, L. (2016). Adhesions of extracellular surface-layer associated proteins in Lactobacillus M5-L and Q8-L. Journal of Dairy Science, 99(2), 1011–1018. https://doi.org/10.3168/jds.2015-10020
dc.relationZommiti, M., Bouffartigues, E., Maillot, O., Barreau, M., Szunerits, S., Sebei, K., Feuilloley, M., Connil, N., & Ferchichi, M. (2018a). In vitro Assessment of the Probiotic Properties and Bacteriocinogenic Potential of Pediococcus pentosaceus MZF16 Isolated From Artisanal Tunisian Meat “Dried Ossban.” In Frontiers in Microbiology (Vol. 9). https://www.frontiersin.org/article/10.3389/fmicb.2018.02607
dc.relationZommiti, M., Bouffartigues, E., Maillot, O., Barreau, M., Szunerits, S., Sebei, K., Feuilloley, M., Connil, N., & Ferchichi, M. (2018b). In vitroassessment of the probiotic properties and bacteriocinogenic potential of pediococcus pentosaceusMZF16 isolated from artisanal tunisian meat "dried ossban. Frontiers in Microbiology, 9(NOV), 2607. https://doi.org/10.3389/fmicb.2018.02607
dc.rightsAtribución-NoComercial-SinDerivadas 4.0 Internacional
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.titleEvaluación de la capacidad de adhesión de cepas bacterianas con propiedades probióticas en líneas celulares humanas tumorales de colon
dc.typeTrabajo de grado - Maestría


Este ítem pertenece a la siguiente institución