dc.contributorGómez, Manuel Iván
dc.contributorGarzón Marín, Ilán
dc.contributor0000-0002-3712-7123
dc.contributorCruz Muñoz, Eliana Carolina
dc.creatorCruz Muñoz, Eliana Carolina
dc.date.accessioned2022-11-21T15:16:06Z
dc.date.available2022-11-21T15:16:06Z
dc.date.created2022-11-21T15:16:06Z
dc.date.issued2022
dc.identifierhttps://repositorio.unal.edu.co/handle/unal/82724
dc.identifierUniversidad Nacional de Colombia
dc.identifierRepositorio Institucional Universidad Nacional de Colombia
dc.identifierhttps://repositorio.unal.edu.co/
dc.description.abstractLos ácidos orgánicos tienen un papel fundamental en la disponibilidad de nutrientes para las plantas, debido a sus mecanismos de acción. El objetivo de investigación fue evaluar ácidos orgánicos en la asimilación de calcio, boro y zinc en clavel. Se realizó aplicación en drench al sustrato de dos fuentes líquidas de complejos de ácidos orgánicos, (i) 540 gL-1 de ácidos húmicos, fúlvicos (15% p/v) con polisacáridos-carboxipolioles; 120-150 gL-1 Carbono Oxidable y (ii) 840 gL-1 de ácidos carboxílicos, aminocarboxilicos (45% p/v) con polisacáridos-carboxipolioles y 220-250 gL-1 Carbono Oxidable, ademas se aplicó foliar de un complejo carboxipoliol de Ca, B y Zn (140 gL-1 Ca, 30 gL-1 B, 30 gL-1 Zn; 90 gL-1 Carbono Oxidable) a dosis 1 y 2 ml.L-1. Se tomaron cuatro mediciones en el tiempo, se evaluaron propiedades físico – químicas y actividad biológica en el sustrato, disponibilidad de nutrientes, crecimiento, calcio, boro y zinc en hojas y savia, producción y calidad del clavel. Los datos se analizaron en un diseño con dos factores entre sujetos (dosis/fuente, foliar) y un factor intra sujetos (tiempo). Como resultados incrementó 12% la CICE con T_Ionic y 4% con T_Humic, los contenidos de calcio 33%, boro 10,2% con T_Ionic y el zinc 12,5% con T_Humic. La actividad biológica incrementó a 1,23 mgCO2 representando el doble con T_Humic para la última semana con respecto a la no aplicación. En tejido vegetal con T_Humic incrementó el calcio 14%, boro 30% y zinc 34% y en savia el calcio incrementó el 40%. En crecimiento la biomasa fresca incrementó el 4% en T_Humic-foliar 2 y en cuanto a las flores en general con T_Humic fueron más gruesas y cortas, mientras que con T_Ionic fueron más largas pero delgadas; en las propiedades físicas del sustrato se presentó diferencias significativas en el factor tiempo siendo la semana 18 la de mayor variación. La producción del cultivo incrementó del 11% con el uso de ácidos orgánicos. En general se tiene que los ácidos orgánicos favorecen las condiciones de respiración en el sustrato, permitieron una mayor disponibilidad de calcio, boro y zinc y asimilación de estos, ademas de un mayor número de tallos por planta. (Texto tomado de la fuente)
dc.description.abstractOrganic acids play a fundamental role in the availability of nutrients for plants, due to their mechanisms of action. The research objective was to evaluate organic acids in the assimilation of calcium, boron, and zinc in carnation. Two liquid sources of organic acid complexes were applied in drench to the substrate: (i) 540 gL-1 of humic and fulvic acids (15% w/v) with polysaccharides-carboxypolyols; 120-150 gL-1 Oxidizable Carbon and (ii) 840 gL-1 of carboxylic acids, aminocarboxylic acids (45% w/v) with polysaccharides-carboxypolyols and 220-250 gL-1 Oxidizable Carbon, in addition, a foliar application of a carboxypolyol complex of Ca, B and Zn (140 gL-1 Ca, 30 gL-1 B, 30 gL-1 Zn; 90 gL-1 Oxidizable Carbon) at doses of 1 and 2 ml.L-1. Four measurements were taken over time, the physical, chemical, and biological activity properties in the substrate, nutrient availability, growth, calcium, boron and zinc in leaves and sap, production and quality of the carnation were evaluated. Data are analyzed in a two-factor between-subjects (dose/source, foliar) and one within-subjects (time) factor design. As a result, the CICE increased 12% with T_Ionic and 4% with T_Humic, calcium contents 33%, boron 10.2% with T_Ionic and zinc 12.5% with T_Humic. Biological activity increased to 1.23 mgCO2 representing double with T_Humic for the last week compared to no application. In plant tissue with T_Humic, calcium increased by 14%, boron by 30% and zinc by 34%, and calcium increased by 40% in sap. In growth, fresh biomass increased 4% in T_Humic-foliar 2 and in terms of flowers, in general with T_Humic they were thicker and shorter, while with T_Ionic they were longer but thin; In the physical properties of the substrate, significant differences were presented in the time factor, with week 18 being the one with the greatest variation. Crop production increased 11% with the use of organic acids. In general, organic acids favor breathing conditions in the substrate, allowing greater availability of calcium, boron and zinc and assimilation of these, in addition to a greater number of stems per plant.
dc.languagespa
dc.publisherUniversidad Nacional de Colombia
dc.publisherBogotá - Ciencias Agrarias - Maestría en Ciencias Agrarias
dc.publisherFacultad de Ciencias Agrarias
dc.publisherBogotá, Colombia
dc.publisherUniversidad Nacional de Colombia - Sede Bogotá
dc.relationRedCol
dc.relationLaReferencia
dc.relationAbad, N., & Noguera, P. (2005). Sustratos para el cultivo sin suelo y fertirrigación. En L. Cadahía, Fertirrigación, cultivos hortícolas y ornamentales (págs. 290 - 339). Mundi - Prensa.
dc.relationAdeleke, R., Nwangburuka, C., & Oboirien, B. (2017). Origins, roles and fate of organic acids in soils: A review. South African Journal of Botany, 393-406. doi:http://dx.doi.org/10.1016/j.sajb.2016.09.002
dc.relationAgronet. (2021). Reporte:Área, Producción y Rendimiento Nacional por Cultivo. Recuperado el 14 de Enero de 2021, de https://www.agronet.gov.co/estadistica/Paginas/home.aspx?cod=1
dc.relationAhmad, Niaz, A., Kanwai, S., Khalid, M., Rahmatullah, & Ahmad, M. (2009). Role of Boron in plant growth. J. Agric. Res, 47(3), 329-338.
dc.relationAlmanza, P., Tovar, T., & Velandia, J. (2016). Biomass and growth rates’ behavior of two varieties of lulo (Solanum quitoense Lam.) in Pachavita-Boyacá. Revista Ciencia y Agricultura, 13(1), 67-76.
dc.relationAlmeida, B., Feresin, M., Rodrigues, J., Otto, R., Eichert, T., & Wallace, H. (2020). Foliar Application of Zn Phosphite and Zn EDTA in Soybean (Glycine max (L.) Merrill): In Vivo Investigations of Transport, Chemical Speciation, and Leaf Surface Changes. Journal of Soil Science and Plant Nutrition. doi:https://doi.org/10.1007/s42729-020-00338-3
dc.relationAraújo, K., Pitarello, M., Carletti, P., Campos, R., & Bobboss, L. (2022). Structural Characterization and Bioactivity of Humic and Fulvic Acids Extracted from Preserved and Degraded Brazilian Cerrado Biomes Soils. Eurasian Soil Science, 1 -10. doi:10.1134/S1064229322030024
dc.relationArévalo, G., Ibarra, D., & Flórez, V. (2007). Desbotone en diferentes estadios de desarrollo del boton floral en clavel estandar (Dianthus caryophillus L.) var. Nelson. Agronomía Colombiana, 25(1), 73-82.
dc.relationArévalo, G., Ibarra, D., & Flórez, V. (2007). Desbotone en diferentes estadios de desarrollo del boton floral en clavel estándar (Dianthus caryophyllus) Var. Nelson. Agronomia Colombiana, 25(1), 73-82.
dc.relationAssem, A., Naggar, E., & Nasharty, E. (2016). Effect of Potassium Fertilization on Growth, Flowering, Corms Production and Chemical Contents of Gladiolus hybrida, L. Cv. "Rose Supreme". Alexandria Science exchange Journal, 37(4), 715-727.
dc.relationBabaso, P., & Sharanagouda, H. (2017). Rice Husk and Its Applications: Review. Int.J.Curr.Microbiol.App.Sci, 6(10), 1144-1156. doi: https://doi.org/10.20546/ijcmas.2017.610.138
dc.relationBaltazar, M., Correia, S., Guinan, K., Sujeeth, N., Braganza, R., & Gonzalves, B. (2021). Recent Advances in the Molecular Effects of Biostimulants in Plants: An Overview. Biomoleculas, 11(8), 1096. doi: https://doi.org/10.3390/biom11081096
dc.relationBaracaldo, A., Ibague, A., Flórez, V., & Chavez, B. (2010). Crecimiento de clavel standar CV. Nelson en suelo y en sustratos. Bragantia, Campinas, 69(1), 1-8.
dc.relationBhagavan, N. (2002). Simple Carbohydrates. Medical Biochemistry, 133-151. doi:https://doi.org/10.1016/B978-012095440-7/50011-1
dc.relationBorges, L., & Altoé, M. (2015). Growth and production of ornamental sunflower grown in the field in response to application of humic acids. Ciência Rural, Santa Maria,, 45(5), 1000 - 1005. doi: http://dx.doi.org/10.1590/0103-8478cr20140050
dc.relationBraziene, Z., Paltanavicius, V., & Avizienyte, D. (2021). The influence of fulvic acid on spring cereals and sugar beets seed germination and plant productivity. Environmental Research, 195, 1-5. doi:https://doi.org/10.1016/j.envres.2021.110824
dc.relationBrennan, R., Armour, D., & Reuter, D. (1993). Diagnosis of Zinc deficiency. En A. Robson, Zinc in soil and plant (págs. 167-181). Wester, Australia: Klumber academic publishers.
dc.relationBrown, W., & March, J. (28 de Octubre de 2020). carboxylic acid. Recuperado el 05 de 09 de 2022, de Encyclopedia Britannica: https://www.britannica.com/science/carboxylic-acid
dc.relationBrukhin , V., & Morozova, N. (2011). Plant Growth and Development - Basic Knowledge and Current Views. Math. Model. Nat. Phenom., 6(02), 1-53. doi:10.1051/mmnp/20116201
dc.relationBrunner, E., Noguchi, K., Gel, Y., & Konietschke, F. (2012). nparLD: An R Software Package for the Nonparametric Analysis of Longitudinal Data in Factorial Experiments. Journal of Statistical Software, 50(12), 1 - 23. Retrieved from http://www.jstatsoft.org/
dc.relationCabrera, R., Solís, A., & Cuervo, W. (2017). Tolerancia y manejo desalinidad, pH y alcalinidad en el cultivo de flores. In V. Flórez, Consideraciones sobre producción, manejo y poscosecha de flores de corte con énfasis en rosa y clavel. (pp. 63-73). Bogotá: Universidad Nacional de Colombia.
dc.relationCalderón, F. (14 de Noviembre de 2002). La cascarilla de arroz "caolinizada"; una alternativa para mejorar la retención de humedad como sustrato para cultivos hidroponicos. Obtenido de www.drcalderonlabs.com
dc.relationCalvo, P., Nelson, L., & Kloepper, J. (2014). Agricultural uses of plant biostimulants. Plant Soil, 3-41. doi:10.1007/s11104-014-2131-8
dc.relationCanellas, L., Canellas, N., Souza, L., Olivares, F., & Piccolo, A. (2020). Plant chemical priming by humic acids. Chemical and Biological Technologies in Agriculture volume, 7(12), 1-17. doi:https://doi.org/10.1186/s40538-020-00178-4
dc.relationCanellas, L., Olivares, F., Aguiar, N., Jones, D., Nebbioso, A., Mazzier, P., & Piccolo, A. (2015). Humic and fulvic acids as biostimulants in horticulture. Scientia Horticulturae, 196(30), 15-27. doi:https://doi.org/10.1016/j.scienta.2015.09.013
dc.relationCeniflores. (2020). Centro de innovación de la floricultura Colombiana. Recuperado el 10 de Enero de 2021, de https://ceniflores.org/cifras-de-floricultura-colombiana/
dc.relationCeniflores. (2021). Sector floricultor. Obtenido de Ceniflores: https://ceniflores.org/sector-floricultor/
dc.relationChavez, W., Di Benedetto, A., Civeira, G., & Lavado, R. (2008). Alternative soilless media for growing Petunia hybrida and Impatienswallerana: Physical behavior, effect of fertilization and nitrate losses. Bioresource Technology, 8082–8087. doi:10.1016/j.biortech.2008.03.063
dc.relationChoo, L., Azura, E., & Ismail, R. (2022). Do it Yourself: Humic Acid. Tropical Agriculture Science, 45(3), 547-564. doi:https://doi.org/10.47836/pjtas.45.3.01
dc.relationCurtis, T., Halford, N., Muttucumaru, N., Postles, J., & Mottram, D. (2010). Sugars in crop plants. Annals of Applied Biology, 1-25. doi:10.1111/j.1744-7348.2010.00443.x
dc.relationDANE. (14 de Enero de 2021). Censo de fincas productoras de flores. Obtenido de https://www.dane.gov.co/index.php/estadisticas-por-tema/agropecuario/censo-de-fincas-productoras-de-flores
dc.relationDos Santos, S., Volpi, K., Pereira, A., Duarte , P., Furtini, A., & Alves, I. (2016). Alternative potassium source for the cultivation of ornamental sunflower. Ciência e Agrotecnologia(40), 257-264. doi:http://dx.doi.org/10.1590/1413-70542016403036115
dc.relationDrobek, M., Fr ˛ac, M., & Cybulska, J. (2019). Plant Biostimulants: Importance of the Quality and Yield of Horticultural Crops and the Improvement of Plant Tolerance to Abiotic Stress—A Review. Agronomy, 2-18. doi:10.3390/agronomy9060335
dc.relationEman, K. (2017). Effect of carboxylic acids fertilization on growth and chemical composition of Althaea rosea Cav. grown in different soil types. Middle East Journal of Agriculture, 6(4), 1313-1327.
dc.relationEsringü, A., Sezen, I., Aytatli, B., & Ersisli, S. (2015). Effect of humic and fulvic acid application on growth parameters in Impatiens walleriana L. Akademik Ziraat Dergisi, 4(1), 37-42.
dc.relationFacci, P. (2001). Chapter 7: Semiconductor nanocrystals from Langmuir- Blodgett films: sinthesis, characterization, and applications. In S. Hari (Ed.), Handbook of surfaces and interfases of materials (pp. 281 - 310). Academic pres. doi:https://doi.org/10.1016/B978-012513910-6/50040-2.
dc.relationFaith, A., & Miwa, K. (2021). Regulation, Diversity and Evolution of Boron Transporters in Plants. Plant and Cell Physiology. doi:10.1093/pcp/pcab025
dc.relationFan, H., Li, T., Sun, X., Zhi, X., & Zheng, C. (2015). Effects of humic acid derived from sediments on the postharvest vase life extension in cut chrysanthemum flowers. Postharvest Biology and Technology, 101, 82-87. doi:https://doi.org/10.1016/j.postharvbio.2014.09.019
dc.relationFernandes, C., & Corá, J. (2004). Bulk density and relationship air/water of horticultural substrate. Scientia Agricola, 61(4), 446-450. doi:10.1590/S0103-90162004000400015
dc.relationFonteno, W. C. (1996). Growing media types and physical/chemical properties. En D. W. Reed, Water, Media and Nutrition for Greenhouse Crops. A Grower´s Guide (págs. 93-122). Batavia, IL, USA: Ball Publishing.
dc.relationGayosso, S., Borges, L., Villanueva, E., Estrada, A., & Garruña, R. (2016). Substrates for growing flowers. Agrociencia, 617-631.
dc.relationGhaffari, S., & Etesami, H. (2020). The Importance of Boron in Plant Nutrition. En J. W. Ltd, Metalloids in Plants: Advances and Future Prospects (págs. 431-447). Hoboken, NJ, USA. doi: 10.1002/9781119487210.ch20
dc.relationGil, A., Marroquín, M., & Martínez, L. (2012). Efecto del Zinc sobre la inducción de ramas productivas en gulupa (Passiflora edulis Sims.). Revista Colombiana de Ciencias Horticolas, 6(2), 152-160.
dc.relationGomes, B., Lopes, F., & Andrade, M. (2016). Humic acids: Structural properties and multiple functionalities for novel technological developments. Materials Science and Egineering, 62(1), 967 - 974. doi:https://doi.org/10.1016/j.msec.2015.12.001
dc.relationGoméz, M., Magnitskiy, S., & Rodríguez, L. (2017). Diagnóstico de K+ y NO3 en savia para determinar el estado nutricional en papa (Solanum tuberosum L.subsp. andigena). REVISTA COLOMBIANA DE CIENCIAS HORTÍCOLAS, 11(1), 133-142. doi:http://dx.doi.org/10.17584/rcch.2017v11i1.6132
dc.relationGonzález, M., Jiménez, L., Yánez, W., & Parducci, P. (2018). Potencial uso de leonardita para el cultivo de rosa en condiciones de invernadero. Agronomía Costarricense, 42(1), 155-162.
dc.relationGuerrero, B., Velandia, M., Fischer, G., & Montenegro, H. (2007). Plant extracts carboxylic acids and soil humidity influence production and craking of cape gooseberry (Physalis peruana) fruit. Revista Colombiana de ciencias hortícolas, 1(1), 9-19.
dc.relationGuerrero, P., Quintero, R., Espinoza, V., Benedicto, G., & Sánchez, M. (2012). Respiración de CO2 como indicador de la actividad microbiana en abonos organicos de Lupinus. Terra Latinoamericana, 30(4), 355-362.
dc.relationGülser, F., & Cig, A. (2021). Relationship between potasium nutrition and flower quality in ornamental plants. 3rd International conference on food, agriculture and veterinary , (págs. 1145-1152). Turkey.
dc.relationGupta, N., Ram, H., & Kumar, B. (2016). Mechanism of Zinc absorption in plants: uptake, transport, traslocation and accumulation. Rev Environ Sci Biotechnol, 15, 89-109. doi:10.1007/s11157-016-9390-1
dc.relationGutiérrez, M., & Torres, J. (2013). Síntomas asociados a la deficiencia de boro en la palma aceitera (Elaeis guineensis JACQ.) en Costa Rica. Agronomía mesoamericana, 24(2), 441-449.
dc.relationHabbasha, S., & Ibrahim, F. (2015). Calcium: Physiological Function, Deficiency and Absorption. International Journal of ChemTech Research, 8(12), 196-202.
dc.relationHafeez, B., Khanif, M., & Saleem1, M. (2013). Role of Zinc in Plant Nutrition- A Review. American Journal of Experimental Agriculture, 3(2), 374-391.
dc.relationHenriques, A., Chaful, A., & Aarts, M. (2012). Strategies to increase zinc deficiency tolerance and homeostais in plants. Braz. J. Plant Physiol, 24(1), 3-8.
dc.relationICONTEC. (1997). ENVIRONMENTAL MANAGEMENT. WATER QUALITY. DETERMINATION OF CALCIUM AND MAGNESIUM. ATOMIC ABSORPTION SPECTROMETRIC METHOD.
dc.relationICONTEC. (2007). SOIL QUALITY. DETERMINATION OF AVAILABLE MICRONUTRIENTS: CUPPER, ZINC, IRON AND MANGANESE.
dc.relationIcontec. (2009). Determinación de Boro, Calcio, Cobalto, Cobre, Hierro, Magnesio, Manganeso, Molibdeno, Niquel, Silicio y Zinc por absorción átomica. Norma Técnica Colombiana 1369.
dc.relationIcontec. (2011). SOIL QUALITY. DETERMINATION OF BORE.
dc.relationICONTEC. (2011). SOIL QUALITY. DETERMINATION OF BORE.
dc.relationICONTEC. (2016). NTC: SOIL QUALITY: DETERMINATION OF EXCHANGEABLE BASES. METHOD OF EXTRACTION USING AMMONIUM ACETATE 1N AND PH 7.
dc.relationIntagri. (2018). Disponibilidad de Nutrimentos y el pH del Suelo. Serie Nutrición Vegetal(113), 1 - 4.
dc.relationJawaharlal, M., Ganga, M., Padmadevi, R., Jegadeeswari, V., & Rathikeyan, S. (2019). A thecnical guide on carnation. Coimbatore: Department of Floriculture and Landscaping Horticultural College and Research Institute Tamil Nadu Agricultural University.
dc.relationJawaharlal, M., Karthikeyan , S., & Ganesh, S. (2021). Development of precision production techniques for carnation (Dianthus caryophyllus L.). The Pharma Innovation Journal, 10(7), 1206-1210.
dc.relationJindo, K., Lopes, F., Da Paixão, D., Sánchez, M., Kempenaar, C., & Pasqualoto, L. (2020). From Lab to Field: Role of Humic Substances Under Open-Field and Greenhouse Conditions as Biostimulant and Biocontrol Agent. Frontiers in plants science. doi: https://doi.org/10.3389/fpls.2020.00426
dc.relationJulca, A., Meneses, L., Blas, R., & Bello, S. (2006). Organic matter, importance, experiences and it role in agriculture. Idesia, 24(1), 49-61.
dc.relationKafkafi, U., & Tarchitzky, J. (2011). Fertigation a tool for efficient fertilizer and water management. Paris, Francia: International Fertilizer Industry Association.
dc.relationKarrow, P., & Sharma, B. (2008). Evaluation os standard carnation cultivars under protected conditions. Retrieved from https://www.academia.edu/8512081/EVALUATION_OF_STANDARD_CARNATION_CULTIVARS_UNDER_PROTECTED_CONDITIONS
dc.relationKeiji , J., Aparecida, S., Cantero, E., Pérez, F., Hernandez, T., Garcia, C., . . . Pasqualoto, L. (2012). Root growth promotion by humic acids from compostedand non-composted urban organic wastes. Plant soil, 209-220. doi:10.1007/s11104-011-1024-3
dc.relationKhan, F., Narayan, S., Kumar, M., & Naranyan, R. (2017). Calcium Deficiency Disorders and their Management in Vegetables. University of Agricultural Sciencesand Technology of Kashmir.
dc.relationKhan, I., Amin, N., Shah, S., Khan, M., Ahmad, S., & Shah, A. (2020). Response of zinnia cultivars to different levels of humic acid. arhad Journal of Agriculture, 37(2), 706-713. doi:https://dx.doi.org/10.17582/journal.sja/2021/37.2.706.713
dc.relationKlucakova, M., Lapcik, L., Lapcikova, B., Pelikan, P., Kucerik, J., & Kalab, M. (2000). Structure and properties of humic and fulvic acids. I. Properties and reactivity of humic acids and fulvic acids. Journal of Polymer Materials, 17(4).
dc.relationLazo, J., Ascencio, o., Ugarte, J., & Yzaguirre, L. (2014). EFECTO DEL HUMUSBOL (HUMATO DOBLE DE POTASIO Y FÓSFORO) EN EL CRECIMIENTO DEL MAÍZ EN FASE VEGETATIVA. Bioagro, 26(3), 143-152.
dc.relationLi, P., Geng, C., Li, L., Li, T., Li, Y., Wie, Q., & Yan, D. (2020). Calcium-sorbitol Chelating Technology and Application in Potatoes. American Journal of Biochemistry and Biotechnology. doi:10.3844/ajbbsp.2020.
dc.relationLiu, H., Gan, W., Rengel, Z., & Zhao, P. (2016). Effects of zinc fertilizer rate and application method on photosynthetic characteristics and grain yield of summer maize. Journal of Soil Science and Plant Nutrition, 16(2), 550-562.
dc.relationLlanos, O., Ríos, A., Jaramillo, C., & Rodriguez, L. (2016). Rice husk as an alternative in decontamination processes. Producción + limpia, 11(2). doi:http://dx.doi.org/10.22507/pml.v11n2a12
dc.relationLópez, G., Almonte, I., Pérez, A., & Sotomayor, D. (2014). Caracterización biológica de suelos y sustratos empleados en la producción de vegetales en invernaderos. Ciencia del suelo, 32(1), 29-39.
dc.relationLopéz, G., Almonte, I., Pérez, A., Sotomayor, D., & Núñez, P. (2014). Caracterización biológica de suelos y sustratos empleados en la producción de vegetales en invernaderos. Ciencia del suelo, 32(1), 29 -39.
dc.relationLópez, R., González, G., Vázquez, R., Olivares, E., Vidales, J., Carranza, R., & Ortega, M. (2014). Humic and fulvic acid extraction method and characterization. Rev. Mex. Cienc. Agríc(8), 1397-1407.
dc.relationLucena. (2009). El empleo de complejantes y quelatos en la fertilización de micronutrientes. Ceres, 56(4), 527-535. Retrieved Diciembre 26, 2020, from https://www.redalyc.org/pdf/3052/305226808020.pdf
dc.relationLucena. (2009). El empleo de complejantes y quelatos en la fertilización de micronutrientes. Ceres, 56(4), 527-535.
dc.relationMadende, M., & Hayes, M. (2020). Fish By-Product Use as Biostimulants: An Overviewof the Current State of the Art, Including RelevantLegislation and Regulations within the EU and USA. Molecules, 25(1122), 1-20. doi:10.3390/molecules25051122
dc.relationMartínez , M., & Ruiz, J. (2018). Effect of the application of earthworm and humic acid leaching in the production of red pepper (Capsicum annuum var. Annumm). Revista de Ciencias Naturales y Agropecuarias, 5(15), 19 -24.
dc.relationMartínez , P., & Roca, D. (2011). Sustratos para el cultivo sin suelo materiales, propiedades y manejo. En V. Flórez, Sustratos, manejo del clima, automatización y control en sistemas de cultivo sin suelo. Universidad Nacional de Colombia.
dc.relationMartinez, F., Sarmiento, J., Fischer, G., & Jiménez, F. (2009). Deficiency symptoms of macronutrients and boron in cape gooseberry plants (Physalis peruviana L.). Agronomía Colombiana, 27(2), 169-178.
dc.relationMirzaee, N., Jabbarzadeh, Z., & Rasouli, M. (2020). Investigation on Some Morphological and Physiological Characteristics of Gerbera jamesonii as Affected by Humic Acid and Nano-Calcium Chelate in Hydroponic Culture Conditions. Journal of Ornamental Plants, 10(1), 1-13.
dc.relationMohamed, A. (2019). Effect of foliar application of humic acid and benzyladenine on growth and flowering of pot marigold (Calendula officinalis L.). Journal of University of Duhok, 22(1), 69-77. doi:https://doi.org/10.26682/avuod.2019.22.1.7
dc.relationMohanta, B., Javed, N., Hasnain, S., & Nayak, A. (2020). Polyelectrolyte complexes of alginate for controlling drug release. En A. Nayak, & S. Hasnain (Edits.), Alginates in Drug Delivery (págs. 297-321). Academic Press. doi:https://doi.org/10.1016/B978-0-12-817640-5.00012-1.
dc.relationMonedero, V., Pérez, G., & Yebra, M. (2010). Perspectives of engineering lactic acid bacteria for biotechnological polyol production. Appl Microbiol Biotechnol, 1003–1015. doi:10.1007/s00253-010-2494-6
dc.relationMonsalve, O., Henao, M., & Gutiérrez, J. (2021). Caracterización de materiales con uso portencial como sustratos en sistemas de cultivo sin suelo. Ciencia y Tecnología Agropecuaria, 22(1). doi:https://doi.org/10.21930/rcta.vol22_num1_art:1977
dc.relationMontoya, V., Ordaz, V., Benedicto, G., Ruiz, A., & Arreola, J. (2021). Chemical and physical characterization of substrates enriched with minerals and compost. Terra Latinoamericana, 39. doi:https://doi.org/10.28940/terra.v39i0.601
dc.relationMorgan, J., Bending, G., & White, P. (2005). Biological costs and benefits to plant–microbe interactions. Journal of Experimental Botany, 56(417), 1729-1739. doi:10.1093/jxb/eri205
dc.relationMosquera, C., Bravo, I., & Hansen, E. (2007). Comportamiento estructural de los ácidos humicos obtenidos de un suelo Andisol del departamento del Cauca. Revista Colombiana de quimica, 36(1), 31-41.
dc.relationNgan, H., Tung, H., Van Le, B., & Tan, D. (2020). Evaluation of root growth, antioxidant enzyme activity and mineral absorbability of carnation (Dianthus caryophyllus “Express golem”) plantlets cultured in two culture systems supplemented with iron nanoparticles. Scientia Horticulturae, 272, 1-11. doi:https://doi.org/10.1016/j.scienta.2020.109612
dc.relationNikbakht, A., Kafi, M., Babalar, M., Ping , Y., Luo, A., & Etemadi, N. (2008). Effect of Humic Acid on Plant Growth, Nutrient Uptake, and Postharvest Life of Gerbera. Journal of Plant Nutrition, 31, 2155 - 2167. doi: 10.1080/01904160802462819
dc.relationNiu, J., Liu, C., Huang, M., Liu, K., & Yan, D. (2020). Effects of Foliar Fertilization: a Review of Current Status and Future Perspectives. Soil Science and Plant Nutrition, 1-15. doi:https://doi.org/10.1007/s42729-020-00346-3
dc.relationNoguchi, K., Latif, M., Konietschke, F., & Gel, Y. (2015). Nonparametric Analysis of Longitudinal Data in Factorial. CRAN.
dc.relationNoiraud, N., Maurousset, L., & Lemoine, R. (2001). Transport of polyols in higher plants. Plant Physiology and Biochemistry, 717-728. doi:https://doi.org/10.1016/S0981-9428(01)01292-X
dc.relationÖhlinger, F. (1995). Methods in soil biology. Springer.
dc.relationOmar, M., Taha, A., & Abbas, A. (2018). Physicochemical Characteristics of Humic and Fulvic Acids Extracted from Different Feedstocks. Soils science and agriculture, 277-281.
dc.relationParedes, M., & Espinosa, D. (2010). Ácidos orgánicos producidos por rizobacterias que solubilizan fosfato: una revisión crítica. Terra Latinoamericana, 28(1), 61-70.
dc.relationParlakova, F., & Dursun, A. (2021). Calcium nitrate on growth and ornamental traits at salt-stressed condition in ornamental kale (Brassica oleracea L. var. Acephala). Ornamental horticulture, 27(2), 196-203. doi:https://doi.org/10.1590/2447-536X.v27i2.2246
dc.relationPasković, I., Soldo, B., Talhaoui, N., Palčić, I., Brkljača, M., Koprivnjak, O., . . . Goreta, S. (2019). Boron foliar application enhances oleuropein level and modulates volatile compound composition in olive leaves. Scientia Horticulturae, 2-9. doi:doi.org/10.1016/j.scienta.2019.108688
dc.relationPhonphuak, N., & Chindaprasirt, P. (2015). 6 - Types of waste, properties, and durability of pore-forming waste-based fired masonry bricks. Eco-Efficient Masonry Bricks and Blocks, 103-127. doi:https://doi.org/10.1016/B978-1-78242-305-8.00006-1
dc.relationQuintero, C., González, M., & Guzmán, P. (2011). Sustratos para cultivos horticolas y flores de corte. In V. Florez, Sustratos, manejo del clima, automatizzación y control en sistemas de cultivo sin suelo (pp. 79-108). Bogotá: Universidad Nacional de Colombia.
dc.relationQuíntero, Guzmán, M., Gonzalez, C., Valenzuela, J., Marín, J., & Delgado, P. (2017). Consideraciones sobre los cultivos sin suelo de clavel. In V. Flórez (Ed.), Consideraciones sobre Producción, Manejo y Poscosecha de Flores de Corte con Énfasis en Rosa y (pp. 11-31). Bogotá: Universidad Nacional de Colombia.
dc.relationQuíntero, M., Guzmán, J., & Valenzuela, J. (2012). Evaluación de sustratos alternativos para el cultivo de miniclavel (Dianthus caryophyllus L.). Revista Colombiana de Ciencias Hortícolas, 6(1), 76-87.
dc.relationRed Agricola. (Noviembre de 2020). Industria colombiana del clavel. Recuperado el 14 de Enero de 2021, de https://www.redagricola.com/co/industria-colombiana-del-clavel/
dc.relationReyes, J., Enríquez, E., Ramirez, M., & Rodríguez, A. (2021). Effect of humic acids, mycorrhiza, and chitosan on growth indicators of two tomato cultivars (Solanum lycopersicum L.). Terra Latinoamericana, 38(3), 654-666. doi:https://doi.org/10.28940/terra.v38i3.671
dc.relationRicci, M., Tilbury, L., Daridon, B., & Sukalac, K. (2019). General Principles to Justify Plant Biostimulant Claims. Frontiers in plant science. doi:https://doi.org/10.3389/fpls.2019.00494
dc.relationRivera, M., Gómez, L., & Cubillos, J. (2017). Effect of humic acids on the growth and the biochemical composition of Arthrospia platensis. Rev. Colomb. Biotecnol, 19(1), 71-81. doi:10.15446/rev.colomb.biote.v19n1.58316
dc.relationRodríguez, F. (s.f). Sustancias humicas: Origen, caracterización y uso en la agricultura. Instituto para la innovación tecnológica en la agricultura. Recuperado el 26 de Diciembre de 2020, de https://www.intagri.com/articulos/nutricion-vegetal/acidos-humicos-fulvicos-nutricion-vegetal
dc.relationRodriguez, J., & Plaza, G. (2016). Efecto de ácidos hidroxicarboxílicos en la biorregulación del estrés causado por herbicidas en el cultivo de tomate. REVISTA COLOMBIANA DE CIENCIAS HORTÍCOLAS, 10(1), 66-79. doi: http://dx.doi.org/10.17584/rcch.2016v10i1.4276
dc.relationRosales, L., Segura, M., Gonzalez, G., Potisek, M., Orozco, J., & Preciado, P. (2015). Influencia de los ácidos fúlvicos sobre la estabilidad de agregados y la raíz de melón en casa sombra. Interciencia, 40(5), 317-323.
dc.relationSánchez, E., Ortega, H., Can, A., Galicia, M., & Camacho, M. (2019). Evaluación de potenciales osmóticos en suelos y aguas costeros de Oaxaca, México, mediante ecuaciones de predicción. Acta Universitaria, 1 -22. doi:. http://doi.org/10.15174.au.2019.2125
dc.relationSantos, M., Huertas, O., Gonzalves, T., Santos, C., Santos , C., García, J., . . . Da Conceição, E. (2021). Humic acids enrich the plant microbiota with bacterial candidates for the suppression of pathogens. Applied Soil Ecology(168), 104146. doi:https://doi.org/10.1016/j.apsoil.2021.104146
dc.relationSantos, M., Melo, B., Santos , C., Santos , C., De sousa, F., Mendes, R., . . . Cid, E. (2021). Humic Substances in Combination With Plant Growth-Promoting Bacteria as an Alternative for Sustainable Agriculture. Frontiers in Microbiology. doi: https://doi.org/10.3389/fmicb.2021.719653
dc.relationSavvas, D., & Gruda, N. (2018). Application of soilless culture technologies in the modern greenhouse industry – A review. European Journal of horticultural science, 83(5), 280 - 293. doi:| https://doi.org/10.17660/eJHS.2018/83.5.2
dc.relationSingh, B. (2018). Rice husk ash. Waste and Supplementary Cementitious Materials in Concrete, 417-460. doi:https://doi.org/10.1016/B978-0-08-102156-9.00013-4
dc.relationSonneveld, C., & Voogt, W. (2009). Substrates: Chemical Characteristics and Preparation. En Plant Nutrition of Greenhouse Crops. Springer, Dordrecht. doi:https://doi-org.ezproxy.unal.edu.co/10.1007/978-90-481-2532-6_11
dc.relationSpeight, J., & Shafik, N. (2018). Chapter 10 - Bioremediation of Contaminated Soil. En J. Speight, & N. Shafik (Edits.), Introduction to Petroleum Biotechnology (págs. 361 - 417). Gulf Professional Publishing. doi:https://doi.org/10.1016/B978-0-12-805151-1.00010-2.
dc.relationStevens, p. (2017). Angiosperm Phylogeny Website. Version 14. Obtenido de http://www.mobot.org/MOBOT/research/APweb/
dc.relationTarafdar, J. (2022). Biostimulants for sustainable crop production. En Tarafdar, New and future developments in microbial biotechnology. Chapter 15 (págs. 299 - 313). India. doi:https://doi.org/10.1016/B978-0-323-85579-2.00004-
dc.relationorres, A., Camberato, D., López , R., & Mickelbart, M. (2010). Medición de pH y Conductividad Eléctrica en sustratos. Purdue Extension HO-237-SW. Retrieved from Medición de pH y Conductividad Eléctrica en sustratos: Flowers.hort.purdue.edu
dc.relationTorres, C. A., Etchevers, J., Fuentes, M., Govaerts, B., De León, F., & Herrera, J. M. (2013). Influence of the Roots on Soil Aggregation. Terra Latinoamericana, 31(1), 71-84.
dc.relationTsonev, T., & Cebola, F. (2012). Zinc in plants - An overview. Plant science, 24(4), 322-333. Recuperado el 30 de Diciembre de 2020, de https://www.researchgate.net/publication/267030914
dc.relationValero, N., Salgado, J., & Corzo, D. (2018). Simple Methodology to Evaluate Bioactivity of Humic Acids obtained from Lignite through Alkaline Extraction and Coal Solubilizing Bacteria. información tecnologica, 29(4). doi:http://dx.doi.org/10.4067/S0718-07642018000400075
dc.relationValverde, A., Sarria, B., & Monteagudo, J. (2007). Análisis comparativo de las caracteristicas fisicoquímicas de la cascarilla de arroz. Scientia et Technica, 255 - 260.
dc.relationVargas, P., Zaragoza, J., Muñoz, J., Sánchez, P., Tijerina, L., López, R., . . . Ojodeagua, J. (2008). Efecto del tamaño de partícula sobre algunas propiedades físicas del tezontle de Guanajauto, México. Agricultura técnica en México, 34(3), 323-331. Recuperado el 07 de Enero de 2020, de http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S0568-25172008000300007&lng=es&tlng=es.
dc.relationVasconcelos, R., Filgueiras, C., Dória, J., Peñaflor, M., & Willett, D. (2021). The Effects of Biostimulants on Induced Plant Defense. Frontiers in Agronomy. doi:https://doi.org/10.3389/fagro.2021.630596
dc.relationVázquez, E., & Zuñiga, D. (2008). SOIL MICROBIAL ACTIVITY IN RESPONSE TO DIFFERENT CONDITIONS OF MOISTURE, TEMPERATURE OR PH. Ecología Aplicada, 7(1).
dc.relationVélez, N., Melo, S., & Flórez, V. (2014). Comportamiento de Ca, Mg y S en un sistema de cultivo sin suelo para clavel. Revista Chapingo Serie Horticultura, 20(2), 171 -185. doi: 10.5154/r.rchsh.2013.10.038
dc.relationVeneros, R., Chaman, M., Araujo, E., & Ramirez, F. (2014). Humic and fulvic acids effect on growth of Passiflora ligularisgrown under greenhouse. Revista Científica de la Facultad de Ciencias Biológicas, 34(1), 13-18.
dc.relationVerdezoto, V., Almagro, G., Ramos, I., Jines, Á., & Rivera, D. (2017). Las sustancias húmicas como sustituto de la materia orgánica en cultivo de rosas (Rosa sp). Revista Científica Mundo de la Investigación y el Conocimiento, 1(5), 995-1010. doi:10.26820/recimundo/1.5.2017.995-1010
dc.relationWallach, R. (2008). PHYSICAL CHARACTERISTICS OF SOILLESS MEDIA. En M. Ravid, & J. Lieth, Soilles culture (págs. 41 -116). doi:https://doi.org/10.1016/B978-044452975-6.50005-8
dc.relationWang, S., & Mulligan, C. (2006). Effect of natural organic matter on arsenic release from soilsand sediments into groundwater. Environmental Geochemistry and Health, 197-214. doi:10.1007/s10653-005-9032-
dc.relationWhite , P., & Broadley, M. (2003). Calcium in palnts. Annals of Botany, 4(92), 487-511. doi:10.1093/aob/mcg164,available online at http://www.aob.oupjournals.org/
dc.relationYamada, T. (2000). Boro: será que estamos aplicando a dose suficiente para o adequado desenvolvimento das plantas? IPNI, 1-5. Recuperado el 29 de Diciembre de 2020, de http://www.ipni.net/publication/ia-lahp.nsf/0/2FF1BD79ED23FCBF852579A300799E60/$FILE/Boro.pdf
dc.relationYang, H., & Jie, L. (2005). Uptake and Transport of Calcium in Plants. Journal of Plant Physiology and Molecular Biology, 31(3), 227-234.
dc.relationYang, S., Huang, H., Tay, A., Qin, W., De Guzman, L., & San Nicolas, E. (2007). Extractive Fermentation for the Production of Carboxylic Acids. In S. Yang (Ed.). Elsevier. doi:https://doi.org/10.1016/B978-044452114-9/50017-7.
dc.relationyang, S., Zhang, Z., Cong, L., Wang, X., & Shi, S. (2013). Effect of fulvic acid on the phosphorus availability in acid soil. Journal of Soil Science and Plant Nutrition, 13(3), 526-533.
dc.relationZeng, H., Wu, H., Yan, F., Yi, K., & Zhu, Y. (2021). Molecular regulation of zinc deficiency responses in plants. Journal plant physiology, 261. doi:https://doi.org/10.1016/j.jplph.2021.153419
dc.relationZhang, X., Dippold, M., Kusyakov, Y., & Razavi, B. (2019). Spatial pattern of enzyme activities depends on root exudate composition. Soil Biology and Biochemistry, 133, 83-93. doi:https://doi.org/10.1016/j.soilbio.2019.02.010
dc.relationZhang, Y., Fu, C., Yan, Y., Fan, X., & Wang, Y. (2014). Foliar Application of Sugar Alcohol Zinc Increases Sugar Content in Apple Fruit and Promotes Activity of Metabolic Enzymes. HORTSCIENCE, 48(8), 1067-1070.
dc.rightsAtribución-NoComercial-SinDerivadas 4.0 Internacional
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.titleEfecto de la aplicación de ácidos orgánicos en la asimilación de Ca, B y Zn en el cultivo de clavel estándar (Dianthus caryophyllus) cultivado en sustrato
dc.typeTrabajo de grado - Maestría


Este ítem pertenece a la siguiente institución