dc.contributorMuñoz Flórez, Jaime Eduardo
dc.contributorRugeles Silva, Paula Andrea
dc.contributorGrupo de Investigación en Diversidad Biológica
dc.contributorVelez Martinez, Glever Alexander [0009-0002-9029-0154]
dc.contributorMuñoz Flórez, Jaime Eduardo [0000-0002-8237-0499]
dc.contributorRugeles Silva, Paula Andrea [0000-0002-7419-6638]
dc.creatorVélez Martínez, Glever Alexander
dc.date.accessioned2023-06-05T16:51:04Z
dc.date.available2023-06-05T16:51:04Z
dc.date.created2023-06-05T16:51:04Z
dc.date.issued2023-04-20
dc.identifierhttps://repositorio.unal.edu.co/handle/unal/83966
dc.identifierUniversidad Nacional de Colombia
dc.identifierRepositorio Institucional Universidad Nacional de Colombia
dc.identifierhttps://repositorio.unal.edu.co/
dc.description.abstractLos microorganismos del suelo en bosques y páramos son ejes claves en el mantenimiento de los ecosistemas por sus actividades de descomposición, nutrición de plantas e intervención en los ciclos biogeoquímicos. En esta investigación se recolectaron muestras de suelo en cuatro localidades en la cordillera central de los Andes en el Valle del Cauca, Colombia siguiendo un gradiente altitudinal entre los 1000 y 3800 msnm. Seguidamente se secuenciaron el gen 16S de ARNr para bacterias y la región ITS1 para hongos empleando metabarcoding. Los análisis de composición taxonómica de microorganismos mostraron variaciones de abundancias a través del gradiente altitudinal, siendo las bacterias Acidobacteriota y Proteobacteriota favorecidas en las mayores alturas y Actinobacteria, Firmicutes y Verrucomicrobia en las menores elevaciones. En hongos, Ascomycota tuvo asignación máxima de lecturas en la mayor elevación, Basidiomycota tendió a dominar en las dos menores altitudes y Mortierellomycota reportó la mayoría de sus lecturas en elevaciones intermedias. Las tendencias de esas clasificaciones presentaron relaciones con parámetros fisicoquímicos del suelo como el carbono orgánico, nitrógeno y pH. El índice de Shannon indicó alta diversidad de bacterias y hongos (>3) en todas las localidades, presentándose un patrón de “U” invertida con máximos de diversidad en la reserva el Pailón a 2400 msnm. Además, se evidenciaron asociaciones de géneros de microorganismos con plantas dentro de los ecosistemas y anotaciones funcionales predictivas diferenciales a través el gradiente. Concluimos que las comunidades de bacterias y hongos del suelo difirieron en estructura y diversidad conforme variaron factores preponderantes para los microorganismos edáficos. (Texto tomado de la fuente)
dc.description.abstractSoil microorganisms in forests and páramos are key axes in the maintenance of ecosystems due to their decomposition activities, plant nutrition and intervention in biogeochemical cycles. In this research, soil samples were collected in four localities in the central Andes mountain range in Valle del Cauca, Colombia, following an altitudinal gradient between 1000 and 3800 masl. The 16S rRNA gene for bacteria and the ITS1 region for fungi were sequenced using metabarcoding. Analysis of the taxonomic composition of microorganisms showed variations in abundance across the altitudinal gradient, with Acidobacteriota and Proteobacteriota being favored at higher altitudes and Actinobacteria, Firmicutes and Verrucomicrobia at lower elevations. In fungi, Ascomycota was more abundant at higher elevations, Basidiomycota tended to dominate at lower elevations and Mortierellomycota reported most of their readings at intermediate elevations. Trends in these classifications showed relationships with soil physicochemical parameters such as organic carbon, nitrogen and pH. The Shannon index indicated high diversity of bacteria and fungi (>3) in all localities, presenting an inverted "U" pattern with maximum diversity in the Pailón reserve at 2400 masl. In addition, associations of microorganism genera with plants within the ecosystems and differential predictive functional annotations across the gradient were evidenced. We conclude that soil bacterial and fungal communities differed in structure and diversity as factors preponderant for edaphic microorganisms varied.
dc.languagespa
dc.publisherUniversidad Nacional de Colombia
dc.publisherPalmira - Ciencias Agropecuarias - Maestría en Ciencias Biológicas
dc.publisherFacultad de Ciencias Agropecuarias
dc.publisherPalmira, Valle del Cauca, Colombia
dc.publisherUniversidad Nacional de Colombia - Sede Palmira
dc.relationAshraf, M., Hussain, M., Ahmad, M. S. A., Al-Qurainy, F., & Hameed, M. (2012). Strategies for conservation of endangered ecosystems. Pakistan Journal of Botany, 44 (SPL. ISS. 2).
dc.relationBayranvand, M., Akbarinia, M., Salehi Jouzani, G., Gharechahi, J., Kooch, Y., & Baldrian, P. (2021). Composition of soil bacterial and fungal communities in relation to vegetation composition and soil characteristics along an altitudinal gradient. FEMS Microbiology Ecology, 97(1). https://doi.org/10.1093/femsec/fiaa201
dc.relationBellard, C., Bertelsmeier, C., Leadley, P., Thuiller, W., & Courchamp, F. (2012). Impacts of climate change on the future of biodiversity. In Ecology Letters (Vol. 15, Issue 4). https://doi.org/10.1111/j.1461-0248.2011.01736.x
dc.relationBilen, S., Bilen, M., & Bardhan, S. (2011). The effects of boron management on soil microbial population and enzyme activities. African Journal of Biotechnology, 10(27).
dc.relationBonilla, C., Gómez, E., & Sánchez, M. (2002). El suelo: los organismos que lo habitan. Cuadernos Ambientales de La Universidad Nacional de Colombia, 5.
dc.relationBrewer, T. E., Handley, K. M., Carini, P., Gilbert, J. A., & Fierer, N. (2016). Genome reduction in an abundant and ubiquitous soil bacterium “Candidatus Udaeobacter copiosus.” Nature Microbiology, 2. https://doi.org/10.1038/nmicrobiol.2016.198
dc.relationCaporaso, J. G., Kuczynski, J., Stombaugh, J., Bittinger, K., Bushman, F. D., Costello, E. K., Fierer, N., Pẽa, A. G., Goodrich, J. K., Gordon, J. I., Huttley, G. A., Kelley, S. T., Knights, D., Koenig, J. E., Ley, R. E., Lozupone, C. A., McDonald, D., Muegge, B. D., Pirrung, M., … Knight, R. (2010). QIIME allows analysis of high-throughput community sequencing data. In Nature Methods (Vol. 7, Issue 5). https://doi.org/10.1038/nmeth.f.303
dc.relationCastaño, C. (2002). Páramos y ecosistemas altoandinos de Colombia en condición hotspot y global climatic tensor. IDEAM, Bogotá.
dc.relationCleveland, C. C., Nemergut, D. R., Schmidt, S. K., & Townsend, A. R. (2007). Increases in soil respiration following labile carbon additions linked to rapid shifts in soil microbial community composition. Biogeochemistry, 82(3). https://doi.org/10.1007/s10533-006-9065-z
dc.relationDaims, H., Lebedeva, E. v., Pjevac, P., Han, P., Herbold, C., Albertsen, M., Jehmlich, N., Palatinszky, M., Vierheilig, J., Bulaev, A., Kirkegaard, R. H., von Bergen, M., Rattei, T., Bendinger, B., Nielsen, P. H., & Wagner, M. (2015). Complete nitrification by Nitrospira bacteria. Nature, 528(7583). https://doi.org/10.1038/nature16461
dc.relationDEFORESTACIÓN EN COLOMBIA - IDEAM. (s/f). Gov.co. Recuperado el 1 de febrero de 2022, de http://www.ideam.gov.co/web/bosques/deforestacion-colombia
dc.relationDobbelaere, S., Vanderleyden, J., & Okon, Y. (2003). Plant growth-promoting effects of diazotrophs in the rhizosphere. In Critical Reviews in Plant Sciences (Vol. 22, Issue 2). https://doi.org/10.1080/713610853
dc.relationdos Banhos, E. F., de Souza, A. Q. L., de Andrade, J. C., de Souza, A. D. L., Koolen, H. H. F., & Albuquerque, P. M. (2014). Endophytic fungi from Myrcia guianensis at the Brazilian Amazon: Distribution and bioactivity. Brazilian Journal of Microbiology, 45(1). https://doi.org/10.1590/S1517-83822014005000027
dc.relationDunbar, J., Barns, S. M., Ticknor, L. O., & Kuske, C. R. (2002). Empirical and theoretical bacterial diversity in four Arizona soils. Applied and Environmental Microbiology, 68(6). https://doi.org/10.1128/AEM.68.6.3035-3045.2002
dc.relationDworkin, M., & Falkow, S. (2006). The Prokaryotes: Ecophysiology and biochemistry. In Springer (Vol. 2).
dc.relationEaton, W. D., & Hamilton, D. A. (2022). Enhanced carbon, nitrogen and associated bacterial community compositional complexity, stability, evenness, and differences within the tree-soils of Inga punctata along an age gradient of planted trees in reforestation plots. Plant and Soil. https://doi.org/10.1007/s11104-022-05793-8
dc.relationFrancioli, D., Schulz, E., Lentendu, G., Wubet, T., Buscot, F., and Reitz, T. (2016). Mineral vs. organic amendments: microbial community structure, activity and abundance of agriculturally relevant microbes are driven by long-term fertilization strategies. Front. Microbiol. 7:1446.
dc.relationFAO. (2015). Estado mundial del recurso del suelo (EMRS) - Resumen Tecnico. In Fao.
dc.relationFierer, N., Bradford, M. A., & Jackson, R. B. (2007). Toward an ecological classification of soil bacteria. Ecology, 88(6), 1354–1364. https://doi.org/10.1890/05-1839
dc.relationGalindo, G., Cabrera, E., Otero, J., Bernal, N.R., & Palacios, S. (2009). Planificación Ecorregional Para La Conservación De La Biodiversidad En Los Andes Y El Piedemonte Amazónico Colombianos. Nat. Conserv. e Inst. Hidrol Meteorol. y Estud. Ambient, 2, 24.
dc.relationGaravito, N. (2016). Los páramos en Colombia, un ecosistema en riesgo. Ingeniare, 19.
dc.relationGeml, J., Pastor, N., Fernandez, L., Pacheco, S., Semenova, T. A., Becerra, A. G., Wicaksono, C. Y., & Nouhra, E. R. (2014). Large-scale fungal diversity assessment in the Andean Yungas forests reveals strong community turnover among forest types along an altitudinal gradient. Molecular Ecology, 23(10), 2452–2472. https://doi.org/10.1111/mec.12765
dc.relationGiri, S., & Pati, B. R. (2004). A comparative study on phyllosphere nitrogen fixation by newly isolated Corynebacterium sp. & Flavobacterium sp. and their potentialities as biofertilizer. Acta Microbiologica et Immunologica Hungarica, 51(1–2). https://doi.org/10.1556/AMicr.51.2004.1-2.3
dc.relationGómez-Rubio, V. (2017). ggplot2 - Elegant Graphics for Data Analysis (2nd Edition) . Journal of Statistical Software, 77(Book Review 2). https://doi.org/10.18637/jss.v077.b02
dc.relationGonzález, A., Cárdenas, M., & Restrepo, S. (2012). Metagenómica: Revelación de comunidades microbianas. Hipótesis, Apuntes Científicos Uniandinos, 12.
dc.relationHjelmsø, M. H., Hansen, L. H., Bælum, J., Feld, L., Holben, W. E., & Jacobsen, C. S. (2014). High-resolution melt analysis for rapid comparison of bacterial community compositions. Applied and Environmental Microbiology, 80(12). https://doi.org/10.1128/AEM.03923-13
dc.relationHuang, S., Bao, J., Shan, M., Qin, H., Wang, H., Yu, X., Chen, J., & Xu, Q. (2018). Dynamic changes of polychlorinated biphenyls (PCBs) degradation and adsorption to biochar as affected by soil organic carbon content. Chemosphere, 211. https://doi.org/10.1016/j.chemosphere.2018.07.133
dc.relationJacoby, R., Peukert, M., Succurro, A., Koprivova, A., & Kopriva, S. (2017). The role of soil microorganisms in plant mineral nutrition—current knowledge and future directions. Frontiers in Plant Science, 8. https://doi.org/10.3389/fpls.2017.01617
dc.relationJanssen, P. H. (2006). Identifying the dominant soil bacterial taxa in libraries of 16S rRNA and 16S rRNA genes. In Applied and Environmental Microbiology (Vol. 72, Issue 3). https://doi.org/10.1128/AEM.72.3.1719-1728.2006
dc.relationJi, Y., Ashton, L., Pedley, S. M., Edwards, D. P., Tang, Y., Nakamura, A., Kitching, R., Dolman, P. M., Woodcock, P., Edwards, F. A., Larsen, T. H., Hsu, W. W., Benedick, S., Hamer, K. C., Wilcove, D. S., Bruce, C., Wang, X., Levi, T., Lott, M., … Yu, D. W. (2013). Reliable, verifiable and efficient monitoring of biodiversity via metabarcoding. Ecology Letters, 16(10). https://doi.org/10.1111/ele.12162
dc.relationKattán, G. (2003). Bosques Andinos y Subandinos del departamento del Valle de Cauca,Colombia. Corporación Autónoma Regional del Valle del Cauca. Santiago de Cali, Colombia.
dc.relationKeller, I., Alexander, J. M., Holderegger, R., & Edwards, P. J. (2013). Widespread phenotypic and genetic divergence along altitudinal gradients in animals. In Journal of Evolutionary Biology (Vol. 26, Issue 12). https://doi.org/10.1111/jeb.12255
dc.relationKielak, A. M., Barreto, C. C., Kowalchuk, G. A., van Veen, J. A., & Kuramae, E. E. (2016). The ecology of Acidobacteria: Moving beyond genes and genomes. In Frontiers in Microbiology (Vol. 7, Issue MAY). Frontiers Media S.A. https://doi.org/10.3389/fmicb.2016.00744
dc.relationLauber, C. L., Hamady, M., Knight, R., & Fierer, N. (2009). Pyrosequencing-based assessment of soil pH as a predictor of soil bacterial community structure at the continental scale. Applied and Environmental Microbiology, 75(15). https://doi.org/10.1128/AEM.00335-09
dc.relationLauber, C. L., Strickland, M. S., Bradford, M. A., & Fierer, N. (2008). The influence of soil properties on the structure of bacterial and fungal communities across land-use types. Soil Biology and Biochemistry, 40(9). https://doi.org/10.1016/j.soilbio.2008.05.021
dc.relationLiang, S., Deng, J., Jiang, Y., Wu, S., Zhou, Y., & Zhu, W. (2020). Functional distribution of bacterial community under different land use patterns based on faprotax function prediction. Polish Journal of Environmental Studies, 29(2). https://doi.org/10.15244/pjoes/108510
dc.relationLin, H. F., Xiong, J., Zhou, H. M., Chen, C. M., Lin, F. Z., Xu, X. M., Oelmüller, R., Xu, W. F., & Yeh, K. W. (2019). Growth promotion and disease resistance induced in Anthurium colonized by the beneficial root endophyte Piriformospora indica. BMC Plant Biology, 19(1). https://doi.org/10.1186/s12870-019-1649-6
dc.relationLópez, A. J. (2006). MANUAL DE EDAFOLOGÍA. Media, 806 (Enero).
dc.relationLouca, S., Parfrey, L. W., & Doebeli, M. (2016). Decoupling function and taxonomy in the global ocean microbiome. Science, 353(6305). https://doi.org/10.1126/science.aaf4507
dc.relationLove, M. I., Huber, W., & Anders, S. (2014). Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biology, 15(12). https://doi.org/10.1186/s13059-014-0550-8
dc.relationLundell, T. K., Mäkelä, M. R., & Hildén, K. (2010). Lignin-modifying enzymes in filamentous basidiomycetes - Ecological, functional and phylogenetic review. In Journal of Basic Microbiology (Vol. 50, Issue 1). https://doi.org/10.1002/jobm.200900338
dc.relationMantilla-Paredes, A. J., Cardona, G. I., Peña-Venegas, C. P., Murcia, U., Rodríguez, M., & Zambrano, M. M. (2009). Distribución de bacterias potencialmente fijadoras de nitrógeno y su relación con parámetros fisicoquímicos en suelos con tres coberturas vegetales en el sur de la Amazonia colombiana. Revista de Biologia Tropical, 57(4). https://doi.org/10.15517/rbt.v57i4.5436
dc.relationMcMurdie, P. J., & Holmes, S. (2013). Phyloseq: An R Package for Reproducible Interactive Analysis and Graphics of Microbiome Census Data. PLoS ONE, 8(4). https://doi.org/10.1371/journal.pone.0061217
dc.relationMeng, H., Li, K., Nie, M., Wan, J. R., Quan, Z. X., Fang, C. M., Chen, J. K., Gu, J. D., & Li, B. (2013). Responses of bacterial and fungal communities to an elevation gradient in a subtropical montane forest of China. Applied Microbiology and Biotechnology, 97(5). https://doi.org/10.1007/s00253-012-4063-7
dc.relationMenkis, A., Urbina, H., James, T. Y., & Rosling, A. (2014). Archaeorhizomyces borealis sp. nov. and a sequence-based classification of related soil fungal species. Fungal Biology, 118(12), 943–955. https://doi.org/10.1016/j.funbio.2014.08.005
dc.relationMichalet, R., Schöb, C., Lortie, C. J., Brooker, R. W., & Callaway, R. M. (2014). Partitioning net interactions among plants along altitudinal gradients to study community responses to climate change. Functional Ecology, 28(1). https://doi.org/10.1111/1365-2435.12136
dc.relationMorales, J., Van der Hammen, T., Torres A., C. C., C., P., Rodríguez N., F. C., J.C., B., Olaya E., P. E., & L., C. (2007). Atlas de Páramos de Colombia. Instituto de Investigación de Recursos Biológicos Alexander von Humboldt., 1.
dc.relationMorrissey, E. M., Mau, R. L., Schwartz, E., McHugh, T. A., Dijkstra, P., Koch, B. J., Marks, J. C., & Hungate, B. A. (2017). Bacterial carbon use plasticity, phylogenetic diversity and the priming of soil organic matter. ISME Journal, 11(8). https://doi.org/10.1038/ismej.2017.43
dc.relationNavarrete, A. A., Kuramae, E. E., de Hollander, M., Pijl, A. S., van Veen, J. A., & Tsai, S. M. (2013). Acidobacterial community responses to agricultural management of soybean in Amazon forest soils. FEMS Microbiology Ecology, 83(3), 607–621. https://doi.org/10.1111/1574-6941.12018
dc.relationNguyen, N. H., Song, Z., Bates, S. T., Branco, S., Tedersoo, L., Menke, J., Schilling, J. S., & Kennedy, P. G. (2016). FUNGuild: An open annotation tool for parsing fungal community datasets by ecological guild. Fungal Ecology, 20. https://doi.org/10.1016/j.funeco.2015.06.006
dc.relationPacheco Flores de Valgaz, A., Barcos-Arias, M., Naranjo-Morán, J., Peña Tapia, D., & Moreira-Gómez, R. (2022). Ericaceous Plants: A Review for the Bioprospecting of Ericoid Mycorrhizae from Ecuador. In Diversity (Vol. 14, Issue 8). MDPI. https://doi.org/10.3390/d14080648
dc.relationPatiño López, C. O., & Sanclemente Reyes, O. E. (2014). Los microorganismos solubilizadores de fósforo (MSF): Una alternativa biotecnólogica para una agricultura sostenible. Entramado, 10(2).
dc.relationPessoa-Filho, M., Barreto, C. C., dos Reis Junior, F. B., Fragoso, R. R., Costa, F. S., de Carvalho Mendes, I., & de Andrade, L. R. M. (2015). Microbiological functioning, diversity, and structure of bacterial communities in ultramafic soils from a tropical savanna. Antonie van Leeuwenhoek, International Journal of General and Molecular Microbiology, 107(4), 935–949. https://doi.org/10.1007/S10482-015-0386-6/METRICS
dc.relationPeters, M. K., Hemp, A., Appelhans, T., Becker, J. N., Behler, C., Classen, A., Detsch, F., Ensslin, A., Ferger, S. W., Frederiksen, S. B., Gebert, F., Gerschlauer, F., Gütlein, A., Helbig-Bonitz, M., Hemp, C., Kindeketa, W. J., Kühnel, A., Mayr, A. V., Mwangomo, E., … Steffan-Dewenter, I. (2019). Climate–land-use interactions shape tropical mountain biodiversity and ecosystem functions. Nature, 568(7750). https://doi.org/10.1038/s41586-019-1048-z
dc.relationPievani, T. (2014). The sixth mass extinction: Anthropocene and the human impact on biodiversity. Rendiconti Lincei, 25(1). https://doi.org/10.1007/s12210-013-0258-9
dc.relationPimm, S. L., & Raven, P. (2000). Biodiversity. Extinction by numbers. Nature, 403(6772). https://doi.org/10.1038/35002708
dc.relationPinto-Figueroa, E. A., Seddon, E., Yashiro, E., Buri, A., Niculita-Hirzel, H., Van Der Meer, J. R., & Guisan, A. (2019). Archaeorhizomycetes Spatial Distribution in Soils along Wide Elevational and Environmental Gradients Reveal Co-abundance Patterns with Other Fungal Saprobes and Potential Weathering Capacities. Frontiers in Microbiology, 10(APR). https://doi.org/10.3389/fmicb.2019.00656
dc.relationPizano, C., & García, H. (2014). El bosque seco tropical en Colombia. Instituto de Investigación de Recursos Biológicos Alexander von Humboldt (IAvH). Bogotá, D.C., Colombia. Fundación CIPAV, 1822(September).
dc.relationPizano, C., González-M., R., López, R., Jurado, R. D., Cuadros, H., Castaño-Naranjo, A., Rojas, A., Peréz, K., Vergara-Varela, H., Idárraga, Á., Isaacs, P., & García, H. (2016). El bosque seco tropical en Colombia. In Biodiversidad 2015. Estado y tendencias de la biodiversidad continental de Colombia. https://doi.org/10.21068/b001.2015.202
dc.relationQuintero, Benavides, A. M., Moreno, N. & Gonzales, S. (2017). BOSQUES ANDINOS, Estado actual y retos para su conservación en Antioquía. Fundación Jardín Botánico de Medellín Joaquín Antonio Uribe, Programa Bosques Andinos (COSUDE). Medellín, Antioquia.
dc.relationR Core Team. (2022). R Core Team 2021 R: A language and environment for statistical computing. R foundation for statistical computing. https://www.R-project.org/. R Foundation for Statistical Computing, 2.
dc.relationRahbek, C. (2005). The role of spatial scale and the perception of large-scale species-richness patterns. In Ecology Letters (Vol. 8, Issue 2). https://doi.org/10.1111/j.1461-0248.2004.00701.x
dc.relationRamírez-Carvajal, R. (1997). Propiedades físicas, químicas y biológicas del suelo. Convenio FENALCE-SENA-SAC, 9–23.
dc.relationRamírez, C., Duarte, C., & Galeano, J. (2010). Estudio de suelos y su relación con las plantas en el páramo el verjón ubicado en el municipio de choachí cundinamarca. Tecciencia, 6(12).
dc.relationRawat, S. R., Männistö, M. K., Bromberg, Y., & Häggblom, M. M. (2012). Comparative genomic and physiological analysis provides insights into the role of Acidobacteria in organic carbon utilization in Arctic tundra soils. FEMS Microbiology Ecology, 82(2). https://doi.org/10.1111/j.1574-6941.2012.01381.x
dc.relationRen, C., Zhang, W., Zhong, Z. K., Han, X., Yang, G., Feng, Y., & Ren, G. (2018). Differential responses of soil microbial biomass, diversity, and compositions to altitudinal gradients depend on plant and soil characteristics. Science of the Total Environment, 610–611, 750–758. https://doi.org/10.1016/j.scitotenv.2017.08.110
dc.relationRen, C., Zhou, Z., Guo, Y., Yang, G., Zhao, F., Wei, G., Han, X., Feng, L., Feng, Y., & Ren, G. (2021). Contrasting patterns of microbial community and enzyme activity between rhizosphere and bulk soil along an elevation gradient. Catena, 196. https://doi.org/10.1016/j.catena.2020.104921
dc.relationRiechers, M., Balázsi, Á., Betz, L., Jiren, T. S., & Fischer, J. (2020). The erosion of relational values resulting from landscape simplification. Landscape Ecology, 35(11). https://doi.org/10.1007/s10980-020-01012-w
dc.relationRomaniuk, R. I., Venece, M., Cosentino, V. R. N., Alvarez, C. R., Ciarlo, E. A., Rimski Korsakov, H., Steinbach, H. S., & Lupi, A. M. (2021). Dinámica del carbono lábil del suelo en sistemas forestales de Eucalyptus grandis Hill ex Maiden en la Mesopotamia Argentina. Bosque (Valdivia), 42(3). https://doi.org/10.4067/s0717-92002021000300343
dc.relationRosling, A., Cox, F., Cruz-Martinez, K., Ihrmark, K., Grelet, G. A., Lindahl, B. D., Menkis, A., & James, T. Y. (2011). Archaeorhizomycetes: Unearthing an ancient class of ubiquitous soil fungi. Science, 333(6044). https://doi.org/10.1126/science.1206958
dc.relationRuiz-Pérez, C. A., Restrepo, S., & Zambrano, M. M. (2016). Microbial and functional diversity within the phyllosphere of Espeletia species in an Andean high-mountain ecosystem. Applied and Environmental Microbiology, 82(6). https://doi.org/10.1128/AEM.02781-15
dc.relationShen, C., Ge, Y., Yang, T., & Chu, H. (2017). Verrucomicrobial elevational distribution was strongly influenced by soil pH and carbon/nitrogen ratio. Journal of Soils and Sediments, 17(10). https://doi.org/10.1007/s11368-017-1680-x
dc.relationShen, C., Shi, Y., Fan, K., He, J. S., Adams, J. M., Ge, Y., & Chu, H. (2019). Soil pH dominates elevational diversity pattern for bacteria in high elevation alkaline soils on the Tibetan Plateau. FEMS Microbiology Ecology, 95(2). https://doi.org/10.1093/femsec/fiz003
dc.relationSiles, J. A., & Margesin, R. (2016). Abundance and Diversity of Bacterial, Archaeal, and Fungal Communities Along an Altitudinal Gradient in Alpine Forest Soils: What Are the Driving Factors? Microbial Ecology, 72(1), 207–220. https://doi.org/10.1007/s00248-016-0748-2
dc.relationSingh, D., Takahashi, K., Kim, M., Chun, J., & Adams, J. M. (2012). A Hump-Backed Trend in Bacterial Diversity with Elevation on Mount Fuji, Japan. Microbial Ecology, 63(2), 429–437. https://doi.org/10.1007/s00248-011-9900-1
dc.relationSt. Leger, R. J., & Wang, J. B. (2020). Metarhizium: jack of all trades, master of many. Open Biology, 10(12). https://doi.org/10.1098/rsob.200307
dc.relationŚwieciło, A., & Zych-Wezyk, I. (2013). Bacterial stress response as an adaptation to life in a soil environment. In Polish Journal of Environmental Studies (Vol. 22, Issue 6).
dc.relationThe jamovi. (2022). The Jamovi Project (Version 2.3) [Computer Software]. In Retrieved from https://www.jamovi.org.
dc.relationToro, D. (2004). LA BIODIVERSIDAD MICROBIANA DEL SUELO, UN MUNDO POR DESCUBRIR. Lunazul Uniacaldas, 1(1).
dc.relationValderrama Ardila, C. H. (2012). Estado de fragmentación del bosque seco de la cuenca alta del río Cauca, Colombia. Biota Colombiana, 13(2).
dc.relationVallejo, V. (2013). Importancia y utilidad de la evaluación de la calidad de suelos mediante el componente microbiano: experiencias en sistemas silvopastoriles. Colombia Forestal, 16(1).
dc.relationVětrovský, T., Kohout, P., Kopecký, M., Machac, A., Man, M., Bahnmann, B. D., Brabcová, V., Choi, J., Meszárošová, L., Human, Z. R., Lepinay, C., Lladó, S., López-Mondéjar, R., Martinović, T., Mašínová, T., Morais, D., Navrátilová, D., Odriozola, I., Štursová, M., … Baldrian, P. (2019). A meta-analysis of global fungal distribution reveals climate-driven patterns. Nature Communications, 10(1). https://doi.org/10.1038/s41467-019-13164-8
dc.relationViitamäki, S., Pessi, I. S., Virkkala, A.-M., Niittynen, P., Kemppinen, J., Eronen-Rasimus, E., Luoto, M., & Hultman, J. (2022). The activity and functions of soil microbial communities in the Finnish sub-Arctic vary across vegetation types. FEMS Microbiology Ecology, 98(8). https://doi.org/10.1093/femsec/fiac079
dc.relationWang, J., Soininen, J., Zhang, Y., Wang, B., Yang, X., & Shen, J. (2011). Contrasting patterns in elevational diversity between microorganisms and macroorganisms. Journal of Biogeography, 38(3). https://doi.org/10.1111/j.1365-2699.2010.02423.x
dc.relationWillms, I. M., Bolz, S. H., Yuan, J., Krafft, L., Schneider, D., Schöning, I., Schrumpf, M., & Nacke, H. (2021). The ubiquitous soil verrucomicrobial clade ‘Candidatus Udaeobacter’ shows preferences for acidic pH. Environmental Microbiology Reports, 13(6), 878–883. https://doi.org/10.1111/1758-2229.13006
dc.relationWillms, I. M., Rudolph, A. Y., Göschel, I., Bolz, S. H., Schneider, D., Penone, C., Poehlein, A., Schöning, I., & Nacke, H. (2020). Globally Abundant “ Candidatus Udaeobacter” Benefits from Release of Antibiotics in Soil and Potentially Performs Trace Gas Scavenging . MSphere, 5(4). https://doi.org/10.1128/msphere.00186-20
dc.relationWWF-Colombia. (2017). Colombia viva: Un país megadiverso de cara al futuro. Informe 2017. 165.
dc.relationYang, N., Li, X., Liu, D., Zhang, Y., Chen, Y., Wang, B., Hua, J., Zhang, J., Peng, S., Ge, Z., Li, J., Ruan, H., & Mao, L. (2022). Diversity patterns and drivers of soil bacterial and fungal communities along elevational gradients in the Southern Himalayas, China. Applied Soil Ecology, 178. https://doi.org/10.1016/j.apsoil.2022.104563
dc.relationZhang, Y., Heal, K. V., Shi, M., Chen, W., & Zhou, C. (2022). Decreasing molecular diversity of soil dissolved organic matter related to microbial community along an alpine elevation gradient. Science of the Total Environment, 818. https://doi.org/10.1016/j.scitotenv.2021.151823
dc.relationZou, X. M., Ruan, H. H., Fu, Y., Yang, X. D., & Sha, L. Q. (2005). Estimating soil labile organic carbon and potential turnover rates using a sequential fumigation-incubation procedure. Soil Biology and Biochemistry, 37(10). https://doi.org/10.1016/j.soilbio.2005.02.028
dc.rightsAtribución-NoComercial-SinDerivadas 4.0 Internacional
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.titleMetabarcoding de comunidades microbianas del suelo en ecosistemas de bosques y páramo en el Valle del Cauca
dc.typeTrabajo de grado - Maestría


Este ítem pertenece a la siguiente institución