dc.contributorRoberto Enrique, Martínez Martínez
dc.contributorGrupo de Física Teórica de Altas Energías
dc.creatorDaniel Guillermo, Martínez Gómez
dc.date.accessioned2022-10-11T05:33:15Z
dc.date.available2022-10-11T05:33:15Z
dc.date.created2022-10-11T05:33:15Z
dc.date.issued2022-09-26
dc.identifierhttps://repositorio.unal.edu.co/handle/unal/82360
dc.identifierUniversidad Nacional de Colombia
dc.identifierRepositorio Institucional Universidad Nacional de Colombia
dc.identifierhttps://repositorio.unal.edu.co/
dc.description.abstractEl momento magnético anómalo del muón es una cantidad que ha sido medida con alta precisión que depende de parámetros fundamentales de la Física de partículas que permiten poner a prueba la exactitud del Modelo Estándar (SM). El experimento Muon g − 2, realizado por el laboratorio Fermilab, encontró una diferencia de 4.2σ respecto del valor teórico del SM. Este resultado abre la puerta para considerar física más allá del SM. Por lo tanto, el modelo no-universal U(1)X puede explicar la distancia entre estos dos resultados. En el marco de esta teoría se estudiaron los diagramas adicionales de Feynman a 1-loop que contribuyen al g − 2 del muón. En este sentido, se tuvo en cuenta que el modelo proporciona un conjunto diferente de acoples de Yukawa cuando se consideran las masas de los neutrinos en Ordenamiento Normal u Ordenamiento Inverso. Al realizar un análisis de Montecarlo de los parámetros relacionados a las correcciones radiativas, se encontró que la contribución adicional resultante de dichos diagramas ajusta el valor teórico dentro la incertidumbre del promedio experimental. (Texto tomado de la fuente)
dc.description.abstractThe anomalous magnetic moment of the muon is a quantity measured with a high precision which depends on the fundamental parameters of the particle physics that allows for testing the accuracy of the Standard Model (SM). The Muon g − 2 experiment, executed by the Fermilab laboratory, obtained a difference of 4.2σ concerning the theoretical value of SM. This discrepancy opens the door to physics beyond the SM. Hence, the Non-Universal U(1)X model could explain the distance between those two results. Under this framework, the additional 1-loop Feynman diagrams that contribute to the g − 2 of the muon were studied. In this regard, it was taken into account that the model provides a different set of Yukawa couplings for the Normal Ordering and Inverse Ordering of the neutrino masses. Performing a Montecarlo analysis for the model parameters related to the radiative corrections, it was found that the contribution made by such diagrams fit the theoretical value into the experimental average’s uncertainty.
dc.languagespa
dc.publisherUniversidad Nacional de Colombia
dc.publisherBogotá - Ciencias - Maestría en Ciencias - Física
dc.publisherDepartamento de Física
dc.publisherFacultad de Ciencias
dc.publisherBogotá, Colombia
dc.publisherUniversidad Nacional de Colombia - Sede Bogotá
dc.relationRedCol
dc.relationLaReferencia
dc.relationGerald W Bennett, B Bousquet, HN Brown, G Bunce, RM Carey, P Cushman, GT Danby, PT Debevec, M Deile, H Deng, et al. Final report of the E821 muon anomalous magnetic moment measurement at BNL. Physical Review D, 73(7):072003,2006
dc.relationBabak Abi, T Albahri, S Al-Kilani, D Allspach, LP Alonzi, A Anastasi, A Anisenkov, F Azfar, K Badgley, S Baeßler, et al. Measurement of the positive muon anomalous magnetic moment to 0.46 ppm. Physical Review Letters, 126(14):141801, 2021.
dc.relationTatsumi Aoyama, Nils Asmussen, Maurice Benayoun, Johan Bijnens, T Blum, M Bruno, I Caprini, CM Carloni Calame, M Ce, Gilberto Colangelo, et al. The anomalous magnetic moment of the muon in the Standard Model. Physics reports, 887:1–166, 2020.
dc.relationSF Mantilla, R Martinez, and F Ochoa. Neutrino and C P-even Higgs boson masses in a non-universal U(1)’ extension. Physical Review D, 95(9):095037, 2017.
dc.relationSheldon L Glashow. Partial-symmetries of weak interactions. Nuclear physics, 22(4):579–588, 1961.
dc.relationA Salam. Elementary particle theory, Nobel symposium No. 8. ed. N. Svartholm, Almqvist and Wiksell, 1969.
dc.relationSteven Weinberg. A model of leptons. Physical review letters, 19(21):1264, 1967.
dc.relationPeter W Higgs. Broken symmetries and the masses of gauge bosons. Physical Review Letters, 13(16):508, 1964.
dc.relationHanneke, S Fogwell, and G Gabrielse. New measurement of the electron magnetic moment and the fine structure constant. Physical Review Letters, 100(12):120801, 2008.
dc.relationJulian Schwinger. On quantum-electrodynamics and the magnetic moment of the electron. Physical Review, 73(4):416, 1948.
dc.relationJulian Schwinger. Quantum electrodynamics. III. the electromagnetic properties of the electron-radiative corrections to scattering. Physical Review, 76(6):790, 1949.
dc.relationP Kusch and HM Foley. The magnetic moment of the electron. Physical Review, 74(3):250, 1948.
dc.relationRichard L Garwin, DP Hutchinson, S Penman, and G Shapiro. Accurate Determination of the μ+Magnetic Moment. Physical Review, 118(1):271, 1960.
dc.relationAndrzej Czarnecki and William J Marciano. Muon anomalous magnetic moment: A harbinger for “new physics”. Physical Review D, 64(1):013014, 2001.
dc.relationJames P Miller, Eduardo de Rafael, and B Lee Roberts. Muon (g-2): experiment and theory. Reports on Progress in Physics, 70(5):795, 2007.
dc.relationGustavo Castelo Branco, PM Ferreira, L Lavoura, MN Rebelo, Marc Sher, and Joao P Silva. Theory and phenomenology of two-Higgs-doublet models. Physics reports, 516(1-2):1–102, 2012.
dc.relationTanmoy Mondal and Hiroshi Okada. Inverse seesaw and (g-2) anomalies in B-L extended two Higgs doublet model. Nuclear Physics B, page 115716, 2022.
dc.relationLuigi Delle Rose, Shaaban Khalil, and Stefano Moretti. Explaining electron and muon g-2 anomalies in an Aligned 2-Higgs Doublet Model with right-handed neutrinos. Physics Letters B, 816:136216, 2021.
dc.relationTomohiro Abe, Ryosuke Sato, and Kei Yagyu. Lepton-specific two Higgs doublet model as a solution of muon g-2 anomaly. Journal of High Energy Physics, 2015(7):64, 2015.
dc.relationEung Jin Chun The muon g-2 in two-Higgs-doublet models Pramana, 87(3):41, 2016.
dc.relationS Gabriel and S Nandi. A new two Higgs doublet model. Physics Letters B, 655(3-4):141–147, 2007.
dc.relationG De Conto and V Pleitez. Electron and muon anomalous magnetic dipole moment in a 331 model. Journal of High Energy Physics, 2017(5):1–32, 2017.
dc.relationTianjun Li, Junle Pei, and Wenxing Zhang. Muon anomalous magnetic moment and Higgs potential stability in the 331 model from SU(6) The European Physical Journal C, 81(7):1–10, 2021.
dc.relationChris Kelso, HN Long, R Martinez, and Farinaldo S Queiroz.Connection of g−2μ electroweak, dark matter, and collider constraints on 331 models. Physical Review D, 90(11):113011, 2014.
dc.relationManfred Lindner, Moritz Platscher, and Farinaldo S Queiroz. A call for new physics: the muon anomalous magnetic moment and lepton flavor violation. Physics Reports, 731:1–82, 2018.
dc.relationMario Reig, José WF Valle, and CA1397 Vaquera-Araujo. Unifying left–right symmetry and 331 electroweak theories. Physics Letters B, 766:35–40, 2017.
dc.relationDominik Stöckinger. The muon magnetic moment and supersymmetry. Journal of Physics G: Nuclear and Particle Physics, 34(2):R45, 2006.
dc.relationB Paul Padley, Kuver Sinha, and Kechen Wang. Natural supersymmetry, muon g−2, and the last crevices for the top squark. Physical Review D, 92(5):055025, 2015
dc.relationJonathan L Feng and Konstantin T Matchev. Supersymmetry and the anomalous anomalous magnetic moment of the muon. Physical Review Letters, 86(16):3480, 2001.
dc.relationHeerak Banerjee, Pritibhajan Byakti, and Sourov Roy. Supersymmetric gauged u(1)Lμ−Lτ model for neutrinos and the muonn (g−2) anomaly. Physical Review D, 98(7):075022, 2018.
dc.relationR Martinez, J Nisperuza, F Ochoa, and JP Rubio. Some phenomenological aspects of a new u(1) model. Physical Review D, 89(5):056008, 2014.
dc.relationHarald Fritzsch and Zhi-Zhong Xing. Flavor symmetries and the description of flavor mixing. Physics Letters B, 413(3-4):396–404, 1997.
dc.relationHarald Fritzsch. Weak-interaction mixing in the six-quark theory. Physics Letters B, 73(3):317–322, 1978.
dc.relationTP Cheng and Marc Sher. Mass-matrix ansatz and flavor nonconservation in models with multiple Higgs doublets. Physical Review D, 35(11):3484, 1987.
dc.relationA Carcamo, R Martinez, and J-A Rodriguez. Different kind of textures of Yukawa coupling matrices in the two Higgs doublet model type III. The European Physical Journal C, 50(4):935–948, 2007.
dc.relationMatthew D Schwartz. Quantum field theory and the standard model. Cambridge University Press, 2014.
dc.relationWalter Grimus and Luís Lavoura. The seesaw mechanism at arbitrary order: disentangling the small scale from the large scale. Journal of High Energy Physics, 2000(11):042, 2001.
dc.relationShaaban Khalil. TeV-scale gauged B- L symmetry with inverse seesaw mechanism. Physical Review D, 82(7):077702, 2010.
dc.relationNouredine Zettili. Quantum mechanics: concepts and applications, 2003
dc.relationFred Jegerlehner.The anomalous magnetic moment of the muon. Springer.
dc.relationKevin J Kelly, Pedro AN Machado, Stephen J Parke, Yuber F Perez-Gonzalez, and Renata Zukanovich Funchal. Neutrino mass ordering in light of recent data. Physical Review D, 103(1):013004, 2021.
dc.relationStefano Gariazzo, Maria Archidiacono, PF de Salas, O Mena, CA Ternes, and M Tórtola. Neutrino masses and their ordering: Global Data, Priors and Models. Journal of Cosmology and Astroparticle Physics, 2018(03):011, 2018.
dc.relationMaria Concepción Gonzalez-Garcia, Michele Maltoni, and Thomas Schwetz. Global analyses of neutrino oscillation experiments. Nuclear Physics B, 908:199–217, 2016.
dc.relationMaria Concepcion Gonzalez-Garcia, Michele Maltoni, and Thomas Schwetz. Nu-FIT: Three-Flavour Global Analyses of Neutrino Oscillation Experiments. Universe, 7(12):459, 2021
dc.relationIvan Esteban, Maria Conceptión González-Garc’aa, Michele Maltoni, Thomas Schwetz, and Albert Zhou. The fate of hints: updated global analysis of three-flavor neutrino oscillations. Journal of High Energy Physics, 2020(9):1–22, 2020.
dc.relationMC Gonzalez-Garcia and M Yokoyama. 14. Neutrino Masses, Mixing, and Oscillations. M. Tanabashi et al.(Particle Data Group), Phys. Rev. D, 98:030001, 2018.
dc.relationFlorian Kaether, Wolfgang Hampel, Gerd Heusser, Juergen Kiko, and Till Kirsten. Reanalysis of the GALLEX solar neutrino flux and source experiments. Physics Letters B, 685(1):47–54, 2010.
dc.relationJN Abdurashitov, VN Gavrin, VV Gorbachev, PP Gurkina, TV Ibragimova, AV Kalikhov, NG Khairnasov, TV Knodel, IN Mirmov, AA Shikhin, et al. Measurement of the solar neutrino capture rate with gallium metal. III. Results for the 2002–2007 data-taking period. Physical Review C, 80(1):015807, 2009.
dc.relationJ Hosaka, K Ishihara, J Kameda, Y Koshio, A Minamino, C Mitsuda, M Miura, S Moriyama, M Nakahata, T Namba, et al. Solar neutrino measurements in Super-Kamiokande-I.Physical Review D 73(11):112001, 2006.
dc.relationJP Cravens, K Abe, T Iida, K Ishihara, J Kameda, Y Koshio, A Minamino, C Mitsuda, M Miura, S Moriyama, et al. Solar neutrino measurements in Super-Kamiokande-II. Physical Review D, 78(3):032002, 2008.
dc.relationK Abe, Y Hayato, T Iida, M Ikeda, C Ishihara, K Iyogi, J Kameda, K Kobayashi, Y Koshio, Y Kozuma, et al. Solar neutrino results in Super-Kamiokande-III. Physical Review D, 83(5):052010, 2011.
dc.relationGianpaolo Bellini, J Benziger, D Bick, G Bonfini, D Bravo, B Caccianiga, L Cadonati, Frank Calaprice, A Caminata, P Cavalcante, et al. Neutrinos from the primary proton-proton fusion process in the Sun. Nature, 512(7515):383, 2014.
dc.relationMG Aartsen, M Ackermann, J Adams, JA Aguilar, M Ahlers, Maryon Ahrens, D Altmann, T Anderson, C Arguelles, TC Arlen, et al. Determining neutrino oscillation parameters from atmospheric muon neutrino disappearance with three years of IceCube DeepCore data. Physical Review D, 91(7):072004, 2015.
dc.relationAzusa Gando, Y Gando, H Hanakago, H Ikeda, K Inoue, K Ishidoshiro, H Ishikawa, M Koga, R Matsuda, S Matsuda, et al. Reactor on-off antineutrino measurement with KamLAND. Physical Review D, 88(3):033001, 2013.
dc.relationP Adamson, I Anghel, C Backhouse, G Barr, M Bishai, A Blake, GJ Bock, D Bogert, SV Cao, D Cherdack, et al. Electron neutrino and antineutrino appearance in the full MINOS data sample. Physical review letters, 110(17):171801, 2013.
dc.relationGeorge Leibbrandt. Introduction to the technique of dimensional regularization. Reviews of Modern Physics, 47(4):849, 1975.
dc.rightsAtribución-NoComercial 4.0 Internacional
dc.rightshttp://creativecommons.org/licenses/by-nc/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.titleContribución al momento magnético anómalo del muón de la extensión no-universal U (1)X
dc.typeTrabajo de grado - Maestría


Este ítem pertenece a la siguiente institución