dc.contributorPatiño Ladino, Oscar Javier
dc.contributorPabón Baquero, Ludy Cristina
dc.contributorGrupo de Investigación en Química de Productos Naturales Vegetales Bioactivos (Quipronab)
dc.contributor0000-0001-5427-4398
dc.contributorhttps://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000013937
dc.creatorHernández Moreno, Lida Vanessa
dc.date.accessioned2023-05-25T18:48:27Z
dc.date.accessioned2023-06-06T16:33:20Z
dc.date.available2023-05-25T18:48:27Z
dc.date.available2023-06-06T16:33:20Z
dc.date.created2023-05-25T18:48:27Z
dc.date.issued2022-10-07
dc.identifierhttps://repositorio.unal.edu.co/handle/unal/83870
dc.identifierUniversidad Nacional de Colombia
dc.identifierRepositorio Institucional Universidad Nacional de Colombia
dc.identifierhttps://repositorio.unal.edu.co/
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/6649849
dc.description.abstractPseudomonas aeruginosa es una bacteria oportunista catalogada como de prioridad critica por la OMS y está asociada a una amplia gama de infecciones principalmente en las unidades de cuidados intensivos (UCI). La patogenicidad de esta bacteria está regulada principalmente por el sistema de comunicación denominado Quorum Sensing (QS) que le permite controlar sus factores de virulencia. Este sistema ha sido relacionado con la resistencia a los antibióticos y por ende se ha planteado su inhibición a partir de sustancias provenientes de plantas como una estrategia para el control de microorganismos resistentes. Las plantas del género Piper se han caracterizado por tener propiedades antibacterianas, antifúngicas, insecticidas, antioxidantes y citotóxicas, sin embargo, son pocos los estudios enfocados a la inhibición del QS. Por lo tanto, en el presente estudio se determinó el potencial de las sustancias provenientes de especies del género Piper como inhibidores del QS de P. aeruginosa. La metodología que se llevó a cabo comprendió la identificación de algunas especies pertenecientes al género Piper con potencial de inhibición de QS y la formación de biopelícula. Posteriormente se realizó el estudio fitoquímico sobre una de las especies con mayor potencial de inhibición de QS (P. pertomentellum) para aislar e identificar algunos constituyentes químicos bioactivos. Finalmente, se determinó la acción de constituyentes químicos presentes en especies del género Piper sobre la formación de biopelículas y la producción de algunos factores de virulencia (elastasas, proteasas y piocianina) asociados al QS de P. aeruginosa. Los resultados obtenidos permitieron identificar especies pertenecientes al género Piper con potencial de inhibición de QS, destacándose P. asperiusculum, P. cumanense, P. pertomentellum, P. bogotense, P. sucrense y P. grande por presentar porcentajes de producción menores o igual al 50% en los ensayos de formación de biopelícula o producción de violaceína. El estudio fitoquímico realizado sobre la parte aérea de P. pertomentellum permitió aislar e identificar una nueva piperamida (etiltembamida (C1)), junto con cuatro amidas conocidas (tembamida (C2), cefaradiona B (C3), benzamida (C4) y tembamida (C5)). Los compuestos identificados se reportan por primera vez para la especie y sus estructuras están de acuerdo con la quimiotaxonomía del género Piper. Por último, en este estudio se destaca el potencial inhibitorio de los factores de virulencia y en la formación de biopelícula de los compuestos con potencial multidiana que correspondieron a amidas (C9 y C10), hidroquinonas (C8, C18 y C19) y derivados de ácido benzoico (C16). presentes en especies del género Piper. Adicionalmente, con los resultados obtenidos se establecieron algunas relaciones de estructura-actividad preliminar sobre los compuestos más activos. Esta investigación contribuye a la búsqueda de inhibidores de origen natural que pueden servir como alternativa de control del QS en P. aeruginosa para reducir la resistencia bacteriana, mediante la caracterización del potencial inhibitorio de sustancias provenientes de algunas especies del género Piper. (Texto tomado de la fuente)
dc.description.abstractPseudomonas aeruginosa is an opportunistic bacterium classified as a critical priority by the WHO and is associated with a wide range of infections mainly in intensive care units (ICU). The pathogenicity of this bacterium is mainly regulated by a communication system called Quorum Sensing (QS) that allows it to control its virulence factors. This system has been related to antibiotic resistance and therefore its inhibition by plant-derived substances has been proposed as a strategy for the control of resistant microorganisms. Plants of the genus Piper have been characterized for having antibacterial, antifungal, insecticidal, antioxidant and cytotoxic properties, however, few studies have focused on the inhibition of the QS. Therefore, in the present study, the potential of substances from Piper species as QS inhibitors of P. aeruginosa was determined. The methodology carried out involved the identification of some species belonging to the genus Piper with potential for QS inhibition and biofilm formation. Subsequently, a phytochemical study was carried out on one of the species with the greatest potential for QS inhibition (P. pertomentellum) to isolate and identify some bioactive chemical constituents. Finally, the action of chemical constituents presents in Piper species on biofilm formation and the production of some virulence factors (elastases, proteases and pyocyanin) associated with QS of P. aeruginosa was determined. The results obtained allowed the identification of species belonging to the genus Piper with QS inhibition potential, with P. asperiusculum, P. cumanense, P. pertomentellum, P. bogotense, P. sucrense and P. grande standing out for presenting production percentages of less than or equal to 50% in the biofilm formation or violacein production assays. The phytochemical study carried out on the aerial part of P. pertomentellum allowed the isolation and identification of a new piperamide (ethyltembamide (C1)), together with four known amides (tembamide (C2), cefaradione B (C3), benzamide (C4) and tembamide (C5)). The identified compounds are reported for the first time for the species and their structures are in agreement with the chemotaxonomy of the genus Piper. Finally, this study highlights the inhibitory potential on virulence factors and biofilm formation of compounds with multidiana potential that corresponded to amides (C9 and C10), hydroquinones (C8, C18 and C19) and benzoic acid derivatives (C16). present in species of the genus Piper. Additionally, with the results obtained, some preliminary structure-activity relationships on the most active compounds were established. This research contributes to the search for inhibitors of natural origin that can serve as an alternative for the control of QS in P. aeruginosa to reduce bacterial resistance, through the characterization of the inhibitory potential of substances from some species of the Piper genus.
dc.languagespa
dc.publisherUniversidad Nacional de Colombia
dc.publisherBogotá - Ciencias - Maestría en Ciencias Farmacéuticas
dc.publisherFacultad de Ciencias
dc.publisherBogotá, Colombia
dc.publisherUniversidad Nacional de Colombia - Sede Bogotá
dc.relationAdonizio, A. L., Downum, K., Bennett, B. C., & Mathee, K. (2006). Anti-quorum sensing activity of medicinal plants in southern Florida. Journal of Ethnopharmacology, 105(3), 427–435. https://doi.org/10.1016/j.jep.2005.11.025
dc.relationAguilar, F. R., Aguilar, S. L., Cubas, D. M., Coaguila, L. Á., Fernández, D. A., Mario, M. M., Campos, R., Guevara-Vásquez, G., & Díaz, R. S. (2016). Portadores de bacterias multirresistentes de importancia clínica en áreas críticas (UCI-UCIN) de un hospital al norte del Perú. Horizonte Médico (Lima), 16(3), 50–57. http://www.scielo.org.pe/scielo.php?script=sci_arttext&pid=S1727-558X2016000300008
dc.relationAhator, S., & Zhang, L. H. (2019). Small Is Mighty—Chemical Communication Systems in Pseudomonas aeruginosa. Annu Rev Microbiol, 73, 559–578. https://doi.org/10.1146/ANNUREV-MICRO-020518-120044
dc.relationAhmed, A. A., & Salih, F. A. (2019). Quercus infectoria gall extracts reduce quorum sensing-controlled virulence factors production and biofilm formation in Pseudomonas aeruginosa recovered from burn wounds. BMC Complementary and Alternative Medicine, 19(1), 177. https://doi.org/10.1186/s12906-019-2594-5
dc.relationAhmed, S. (2022). Pseudomonas aeruginosa and the multifactorial antibiotic resistance. Eurasian Medical Research Periodical, 11, 85–94. https://www.geniusjournals.org/index.php/emrp/article/view/2096/1834
dc.relationAleanizy, F. S., Alqahtani, F. Y., Eltayb, E. K., Alrumikan, N., Almebki, R., Alhossan, A., Almangour, T. A., & AlQahtani, H. (2021). Evaluating the effect of antibiotics sub-inhibitory dose on Pseudomonas aeruginosa quorum sensing dependent virulence and its phenotypes. Saudi Journal of Biological Sciences, 28(1), 550–559. https://doi.org/10.1016/J.SJBS.2020.10.040
dc.relationAleksic, I., Ristivojevic, P., Pavic, A., Radojević, I., Čomić, L. R., Vasiljevic, B., Opsenica, D., Milojković-Opsenica, D., & Senerovic, L. (2018). Anti-quorum sensing activity, toxicity in zebrafish (Danio rerio) embryos and phytochemical characterization of Trapa natans leaf extracts. Journal of Ethnopharmacology, 222, 148–158. https://doi.org/10.1016/j.jep.2018.05.005
dc.relationAlikhani, M. Y., Karimi Tabar, Z., Mihani, F., Kalantar, E., Karami, P., Sadeghi, M., Ahdi Khosroshahi, S., & Farajnia, S. (2014). Antimicrobial Resistance Patterns and Prevalence of blaPER-1 and blaVEB-1 Genes Among ESBL-producing Pseudomonas aeruginosa Isolates in West of Iran. Jundishapur Journal of Microbiology, 7(1). https://doi.org/10.5812/JJM.8888
dc.relationAljeldah, M. M. (2022). Antimicrobial Resistance and Its Spread Is a Global Threat. Antibiotics , 11(8), 1082. https://doi.org/10.3390/ANTIBIOTICS11081082
dc.relationAlva, P. P., Suresh, S., Nanjappa, D. P., James, J. P., Kaverikana, R., Chakraborty, A., Sarojini, B. K., & Premanath, R. (2021). Isolation and identification of quorum sensing antagonist from Cinnamomum verum leaves against Pseudomonas aeruginosa. Life Sciences, 267. https://doi.org/10.1016/J.LFS.2020.118878
dc.relationAmrutha, B., Sundar, K., & Shetty, P. H. (2017). Spice oil nanoemulsions: Potential natural inhibitors against pathogenic E. coli and Salmonella spp. from fresh fruits and vegetables. LWT - Food Science and Technology, 79, 152–159. https://doi.org/10.1016/J.LWT.2017.01.031
dc.relationAntunes, C. M., Ferreira, R. B. R., Buckner, M. M. C., & Finlay, B. B. (2010). Quorum sensing in bacterial virulence. En Microbiology (Vol. 156, Issue 8, pp. 2271–2282). https://doi.org/10.1099/mic.0.038794-0
dc.relationAraujo Baptista, L. M., Rondón Rivas, M. E., Cruz Tenempaguay, R. E., Guayanlema Chávez, J. D., Vargas Córdova, C. A., Morocho Zaragocin, S. v., & Cornejo Sotomayor, S. X. (2019). Antimicrobial activity of the essential oil of Piper amalago L. (Piperaceae) collected in coastal Ecuador. Pharmacology Online, 3, 15–27.
dc.relationAtiax, E., Ahmad, F., Sirat, H. M., & Arbain, D. (2006). Antibacterial Activity and Cytotoxicity Screening of Sumatran Kaduk (Piper sarmentosum Roxb.). Journal of Pharmacology & Therapeutics, 10(5). http://ijpt.iums.ac.ir
dc.relationBaguley, B., Biggar, R., Beland, F., Blanco, E., Betz, J., Cunningham, M., Dunnick, J., Lachenmeier, D., Guo, L., Lunn, R., Jameson, C., Marques, M., Karagas, M., Mccormick, D., Knight, T., Singh, S., Singh, S., Stewart, B., Tseng, C.-H., & Zavadil, J. (2016). IARC Working Group on the Evaluation of Carcinogenic Risks to Humans. Some Drugs and Herbal Products, 108, 1-422.
dc.relationBahari, S., Zeighami, H., Mirshahabi, H., Roudashti, S., & Haghi, F. (2017). Inhibition of Pseudomonas aeruginosa quorum sensing by subinhibitory concentrations of curcumin with gentamicin and azithromycin. Journal of Global Antimicrobial Resistance, 10, 21–28. https://doi.org/10.1016/J.JGAR.2017.03.006
dc.relationBahmani, M., Saki, K., Shahsavari, S., Rafieian-Kopaei, M., Sepahvand, R., & Adineh, A. (2015). Identification of medicinal plants effective in infectious diseases in Urmia, northwest of Iran. Asian Pacific Journal of Tropical Biomedicine, 5(10), 858–864. https://doi.org/10.1016/J.APJTB.2015.06.004
dc.relationBaker, R. E., Mahmud, A. S., Miller, I. F., Rajeev, M., Rasambainarivo, F., Rice, B. L., Takahashi, S., Tatem, A. J., Wagner, C. E., Wang, L. F., Wesolowski, A., & Metcalf, C. J. E. (2021). Infectious disease in an era of global change. Nature Reviews Microbiology 2021 20:4, 20(4), 193–205. https://doi.org/10.1038/s41579-021-00639-z
dc.relationBanerjee, M., Moulick, S., Bhattacharya, K. K., Parai, D., Chattopadhyay, S., & Mukherjee, S. K. (2017). Attenuation of Pseudomonas aeruginosa quorum sensing, virulence and biofilm formation by extracts of Andrographis paniculata. Microbial Pathogenesis, 113, 85–93. https://doi.org/10.1016/J.MICPATH.2017.10.023
dc.relationBaşaran, T. I., Berber, D., Gökalsın, B., Tramice, A., Tommonaro, G., Abbamondi, G. R., Erginer Hasköylü, M., Toksoy Öner, E., Iodice, C., & Sesal, N. C. (2020). Extremophilic Natrinema versiforme Against Pseudomonas aeruginosa Quorum Sensing and Biofilm. Frontiers in Microbiology, 11. https://doi.org/10.3389/FMICB.2020.00079/FULL
dc.relationBassetti, S., Tschudin-Sutter, S., Egli, A., & Osthoff, M. (2022). Optimizing antibiotic therapies to reduce the risk of bacterial resistance. European Journal of Internal Medicine, 99, 7–12. https://doi.org/10.1016/J.EJIM.2022.01.029
dc.relationBassler, B. L., & Losick, R. (2006). Bacterially speaking. Cell, 125(2), 237–246. https://doi.org/10.1016/J.CELL.2006.04.001
dc.relationBernal, R. (2022). Piper. Catálogo de Plantas y Líquenes de Colombia. Instituto de Ciencias Naturales, Universidad Nacional de Colombia, Bogotá. http://catalogoplantasdecolombia.unal.edu.co/es/resultados/genero/piper/
dc.relationBertini, E. V. (2018). Importancia de los mecanismos de quorum sensing en las interacciones entre microorganismos endofíticos. Universidad Nacional de Tucumán.
dc.relationBhattarai, S., Sharma, B. K., Subedi, N., Ranabhat, S., & Baral, M. P. (2021). Burden of Serious Bacterial Infections and Multidrug-Resistant Organisms in an Adult Population of Nepal: A Comparative Analysis of Minimally Invasive Tissue Sampling Informed Mortality Surveillance of Community and Hospital Deaths. Clinical Infectious Diseases, 73(Suppl 5), S415. https://doi.org/10.1093/CID/CIAB773
dc.relationBodí, M., & Garnacho, J. (2007). Pseudomonas aeruginosa: tratamiento combinado frente a monoterapia. Medicina Intensiva, 31(2), 83–87. https://scielo.isciii.es/scielo.php?script=sci_arttext&pid=S0210-56912007000200005&lng=es&nrm=iso&tlng=es
dc.relationBorges, A., Abreu, A. C., Dias, C., Saavedra, M. J., Borges, F., & Simões, M. (2016). New Perspectives on the Use of Phytochemicals as an Emergent Strategy to Control Bacterial Infections Including Biofilms. Molecules, 21(7). https://doi.org/10.3390/MOLECULES21070877
dc.relationBotelho, J., Grosso, F., & Peixe, L. (2019). Antibiotic resistance in Pseudomonas aeruginosa – Mechanisms, epidemiology and evolution. Drug Resistance Updates, 44. https://doi.org/10.1016/j.drup.2019.07.002
dc.relationBouyahya, A., Dakka, N., Et-Touys, A., Abrini, J., & Bakri, Y. (2017). Medicinal plant products targeting quorum sensing for combating bacterial infections. Asian Pacific Journal of Tropical Medicine, 10(8), 729–743. https://doi.org/10.1016/j.apjtm.2017.07.021
dc.relationBramhachari, P. V. (2019). Implication of Quorum Sensing and Biofilm Formation in Medicine, Agriculture and Food Industry (P. V. Bramhachari, Ed.). Springer Singapore. https://doi.org/10.1007/978-981-32-9409-7
dc.relationBrazão, M. A. B., Brazão, F. v, Maia, J. G. S., & Monteiro, M. C. (2014). Antibacterial activity of the Piper aduncum oil and dillapiole, its main constituent, against multidrug-resistant strains. Boletín Latinoamericano y Del Caribe de Plantas Medicinales y Aromáticas, 13(6), 517–526. https://www.redalyc.org/articulo.oa?id=85632545002
dc.relationBrown-Joel, Z. O., Colleran, E. S., & Stone, M. S. (2018). Inflammatory sebotropic reaction associated with kava kava ingestion. JAAD Case Reports, 4(5), 437–439. https://doi.org/10.1016/J.JDCR.2017.12.011
dc.relationBru, J.-L., Rawson, B., Trinh, C., Whiteson, K., Molin Høyland-Kroghsbo, N., & Siryaporn, A. (2019). PQS Produced by the Pseudomonas aeruginosa Stress Response Repels Swarms Away from Bacteriophage and Antibiotics. Journal of Bacteriology, 201(23). https://doi.org/10.1128/JB
dc.relationBrum-Bousquet, M., Tillequin, F., Koch, M., & Sévenet, T. (1985). Alkaloids from Sarcomelicope argyrophylla. Planta Medica, 51(06), 536–537. https://doi.org/10.1055/s-2007-969594
dc.relationBrunel, A.-S., & Guery, B. (2017). Multidrug resistant (or antimicrobial-resistant) pathogens - alternatives to new antibiotics? Swiss Medical Weekly, 147(47–48). https://doi.org/10.4414/SMW.2017.14553
dc.relationBruschi, P., Mancini, M., Mattioli, E., Morganti, M., & Signorini, M. A. (2014). Traditional uses of plants in a rural community of Mozambique and possible links with Miombo degradation and harvesting sustainability. Journal of Ethnobiology and Ethnomedicine, 10(1), 1–22. https://doi.org/10.1186/1746-4269-10-59/TABLES/7
dc.relationCabral, V., Luo, X., Junqueira, E., Costa, S. S., Mulhovo, S., Duarte, A., Couto, I., Viveiros, M., & Ferreira, M. J. U. (2015). Enhancing activity of antibiotics against Staphylococcus aureus: Zanthoxylum capense constituents and derivatives. Phytomedicine, 22(4), 469–476. https://doi.org/10.1016/J.PHYMED.2015.02.003
dc.relationCabrera, C. E., Gómez, R. F., & Zúñiga, A. E. (2007). La resistencia de bacterias a antibióticos, antisépticos y desinfectantes una manifestación de los mecanismos de supervivencia y adaptación. Colomb Med, 38(2), 149–158. http://www.foxitsoftware.comForevaluationonly.
dc.relationCáceres, A., & Kato, M. J. (2014). Importance of a multidisciplinary evaluation of Piper genus for development of new natural products in Latin America. International Journal of Phytocosmetics and Natural Ingredients, 1(1), 4–4. https://doi.org/10.15171/IJPNI.2014.04
dc.relationCalderón, Á. I., Romero, L. I., Ortega-Barría, E., Solís, P. N., Zacchino, S., Gimenez, A., Pinzón, R., Cáceres, A., Tamayo, G., Guerra, C., Espinosa, A., Correa, M., & Gupta, M. P. (2010a). Screening of Latin American plants for antiparasitic activities against malaria, Chagas disease, and leishmaniasis. Http://Dx.Doi.Org/10.3109/13880200903193344, 48(5), 545–553. https://doi.org/10.3109/13880200903193344
dc.relationCamou, T., Zunino, P., & Hortal, M. (2017). Alarma por la resistencia a antimicrobianos: situación actual y desafíos. Rev Méd Urug, 33(4), 277–284. https://doi.org/10.29193/RMU.34.3.6
dc.relationCarette, J., Nachtergael, A., Duez, P., Jaziri, E., & Rasamiravaka, T. (2020). Natural Compounds Inhibiting Pseudomonas aeruginosa Biofilm Formation by Targeting Quorum Sensing Circuitry. www.intechopen.com
dc.relationCarlson, T. J. (2002). Medical ethnobotanical research as a method to identify bioactive plants to treat infectious diseases. Advances in Phytomedicine, 1(C), 45–53. https://doi.org/10.1016/S1572-557X(02)80012-5
dc.relationCarmona-Hernández, Ó., Del, M., Fernández, S., Palmeros-Sánchez, B., Armando, J., García, L., & Aguirre Beltrán, G. (2014). Actividad insecticida de extractos etanólicos foliares de nueve Piperaceas (Piper spp.) en Drosophila melanogaster. Revista Internacional de ContaminaciónAmbiental, 30, 67–73.
dc.relationCarreño, P. (2016). La etnobotánica y su importancia como herramienta para la articulación entre conocimientos ancestrales y científicos. Universidad Distrital Fransisco José de Caldas.
dc.relationCastañeda, M. L., Martínez Químico, J. R., & Stanshenko, E. E. (2007). Estudio de la composición química y la actividad biológica de los aceites esenciales de diez plantas aromáticas colombianas. Scientia Et Technica, XIII(33), 165–166. http://cenivam.uis.edu.co/informacion/historia.html
dc.relationCastillo-Juárez, I., García-Contreras, R., Velázquez-Guadarrama, N., Soto-Hernández, M., & Martínez-Vázquez, M. (2013). Amphypterygium adstringens Anacardic Acid Mixture Inhibits Quorum Sensing-controlled Virulence Factors of Chromobacterium violaceum and Pseudomonas aeruginosa. Archives of Medical Research, 44(7), 488–494. https://doi.org/10.1016/J.ARCMED.2013.10.004
dc.relationCathcart, G. R. A., Quinn, D., Greer, B., Harriott, P., Lynas, J. F., Gilmore, B. F., & Walker, B. (2011). Novel inhibitors of the Pseudomonas aeruginosa virulence factor LasB: A potential therapeutic approach for the attenuation of virulence mechanisms in pseudomonal infection. Antimicrobial Agents and Chemotherapy, 55(6), 2670–2678. https://doi.org/10.1128/AAC.00776-10/SUPPL_FILE/GC_AAC_SUPPLEMENTARY_INFORMATION.ZIP
dc.relationCelis, Á., Mendoza, C., Pachón, M., Cardona, J., Delgado, W., & Cuca, L. E. (2008). Extractos vegetales utilizados como biocontroladores con énfasis en la familia Piperaceae. Una revisión. Agronomía Colombiana, 26(1), 97–106. http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S0120-99652008000100012&lng=en&nrm=iso&tlng=es
dc.relationChaired By Jim O’Neill. (2016). Tackling drug-resistant infections globally: Final report and recommendations. The review on antimicrobial resistance. Review on Antimicrobial Resistance.
dc.relationChakraborty, D., & Shah, B. (2011). Antimicrobial, anti¬oxidative and anti¬hemolytic activity of Piper betel leaf extracts. International Journal of Pharmacy and Pharmaceutical Sciences, 3(3), 192–199.
dc.relationChbib, C. (2020). Mechanism and Types of Quorum Sensing Inhibitors. En Trends in Quorum Sensing and Quorum Quenching (1a ed., pp. 199–214). CRC Press. https://doi.org/10.1201/9780429274817-15
dc.relationChen, I. S., Chen, Y. C., & Liao, C. H. (2007). Amides with anti-platelet aggregation activity from Piper taiwanense. Fitoterapia, 78(6), 414–419. https://doi.org/10.1016/J.FITOTE.2007.04.009
dc.relationCheng, M. J., Lee, K. H., Tsai, I. L., & Chen, I. S. (2005). Two new sesquiterpenoids and anti-HIV principles from the root bark of Zanthoxylum ailanthoides. Bioorganic and Medicinal Chemistry, 13(21), 5915–5920. https://doi.org/10.1016/J.BMC.2005.07.050
dc.relationChioro, A., Coll-Seck, A. M., Høie, B., Moeloek, N., Motsoaledi, A., Rajatanavin, R., & Touraine, M. (2015). Antimicrobial resistance: A priority for global health action. Bulletin of the World Health Organization, 93(7), 439. https://doi.org/10.2471/BLT.15.158998
dc.relationChou, S.-C., Su, C.-R., Ku, Y.-C., & Wu, T.-S. (2009). The Constituents and Their Bioactivities of Houttuynia cordata . Chem. Pharm. Bull, 57(11), 1227–1230.
dc.relationChoudhury, S., Medina-Lara, A., & Smith, R. (2022). Antimicrobial resistance and the COVID-19 pandemic. Bulletin of the World Health Organization, 100(5), 295. https://doi.org/10.2471/BLT.21.287752
dc.relationChristine, Dipl.-P., & Maurer, K. (2015). Biological Evaluation of Novel Quorum Sensing Inhibitors as Anti-infectives Against Pseudomonas aeruginosa. Universität des Saarlandes.
dc.relationCLSI. (2018). Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically (CLSI standard M07, Ed.; M07-11a eds., Vol. 38). www.clsi.org.
dc.relationCorehtash, Z. G., Khorshidi, A., Firoozeh, F., Akbari, H., & Aznaveh, A. M. (2015). Biofilm formation and virulence factors among pseudomonas aeruginosa isolated from burn patients. Jundishapur Journal of Microbiology, 8(10). https://doi.org/10.5812/jjm.22345
dc.relationCosta, G. M., Endo, E. H., Cortez, D. A. G., Nakamura, T. U., Nakamura, C. V., & Dias Filho, B. P. (2016). Antimicrobial effects of Piper hispidum extract, fractions and chalcones against Candida albicans and Staphylococcus aureus. Journal de Mycologie Médicale / Journal of Medical Mycology, 26(3), 217–226. https://doi.org/10.1016/j.mycmed.2016.03.002
dc.relationda Costa, J. G., Campos, A. R., Brito, S. A., Pereira, C. K. B., Souza, E. O., & Rodrigues, F. F. G. (2010). Biological screening of araripe basin medicinal plants using Artemia salina Leach and pathogenic bacteria. Pharmacognosy Magazine, 6(24), 331. https://doi.org/10.4103/0973-1296.71792
dc.relationda Silva, H. A., Yamaguchi, L. F., Young, M. C. M., Ramos, C. S., Amorim, A. M. A., Kato, M. J., & Batista, R. (2018). Antifungal piperamides from piper mollicomum kunth (Piperaceae). Ecletica Quimica, 43(1), 33–38. https://doi.org/10.26850/1678-4618eqj.v43.1.33-38
dc.relationda Silva, J. K. R., Pinto, L. C., Burbano, R. M. R., Montenegro, R. C., Guimarães, E. F., Andrade, E. H. A., & Maia, J. G. S. (2014). Essential oils of Amazon Piper species and their cytotoxic, antifungal, antioxidant and anti-cholinesterase activities. Industrial Crops & Products, Complete(58), 55–60. https://doi.org/10.1016/J.INDCROP.2014.04.006
dc.relationda Silva Pinto, A. C., Silva, L. F. R., Cavalcanti, B. C., Melo, M. R. S., Chaves, F. C. M., Lotufo, L. V. C., de Moraes, M. O., de Andrade-Neto, V. F., Tadei, W. P., Pessoa, C. O., Vieira, P. P. R., & Pohlit, A. M. (2009). New antimalarial and cytotoxic 4-nerolidylcatechol derivatives. European Journal of Medicinal Chemistry, 44(6), 2731–2735. https://doi.org/10.1016/J.EJMECH.2008.10.025
dc.relationDane. (2022). Estadísticas Vitales (EEVV) Bogotá DC 28 de junio de 2022.
dc.relationDatta, S., Jana, D., Maity, T. R., Samanta, A., & Banerjee, R. (2016). Piper betle leaf extract affects the quorum sensing and hence virulence of Pseudomonas aeruginosa PAO1. 3 Biotech, 6(1), 1–6. https://doi.org/10.1007/s13205-015-0348-8
dc.relationdel Barrio-Tofiño, E., Zamorano, L., Cortes-Lara, S., López-Causapé, C., Sánchez-Diener, I., Cabot, G., Bou, G., Martínez-Martínez, L., Oliver, A., Group, G.-S. P. study, Galán, F., Gracia, I., Rodríguez, M. A., Martín, L., Sánchez, J. M., Viñuela, L., García, M. V., Lepe, J. A., Aznar, J., … Oteo, J. (2019). Spanish nationwide survey on Pseudomonas aeruginosa antimicrobial resistance mechanisms and epidemiology. Journal of Antimicrobial Chemotherapy, 74(7), 1825–1835. https://doi.org/10.1093/JAC/DKZ147
dc.relationDelgado, W., Avella, E., & de Díaz, A. (1998). Alcaloides bencilisoquinolínicos del talloPiper augustum Rudge. Revista Colombiana de Química, 27(1).
dc.relationDenisuik, A. J., Garbutt, L. A., Golden, A. R., Adam, H. J., Baxter, M., Nichol, K. A., Lagacé-Wiens, P., Walkty, A. J., Karlowsky, J. A., Hoban, D. J., Mulvey, M. R., & Zhanel, G. G. (2019). Antimicrobial-resistant pathogens in Canadian ICUs: results of the CANWARD 2007 to 2016 study. The Journal of Antimicrobial Chemotherapy, 74(3), 645–653. https://doi.org/10.1093/JAC/DKY477
dc.relationDeryabin, D., Galadzhieva, A., Kosyan, D., & Duskaev, G. (2019). Plant-Derived Inhibitors of AHL-Mediated Quorum Sensing in Bacteria: Modes of Action. International Journal of Molecular Sciences 2019, Vol. 20, Page 5588, 20(22), 5588. https://doi.org/10.3390/IJMS20225588
dc.relationDesai, S. J., Prabhu, B. R., & Mulchandani, N. B. (1988). Aristolactams and 4,5dioxoaporphines from Piper longum. Phytochemistry, 27(5), 1511–1515.
dc.relationdo Nascimento, J. C., de Paula, V. F., David, J. M., & David, J. P. (2012). Occurrence, biological activities and 13C NMR data of amides from Piper (Piperaceae). Química Nova, 35(11), 2288–2311. https://doi.org/10.1590/S0100-40422012001100037
dc.relationDurant-Archibold, A. A., Santana, A. I., & Gupta, M. P. (2018). Ethnomedical uses and pharmacological activities of most prevalent species of genus Piper in Panama: A review. En Journal of Ethnopharmacology (Vol. 217, pp. 63–82). Elsevier Ireland Ltd. https://doi.org/10.1016/j.jep.2018.02.008
dc.relationEggimann, P., & Pittet, D. (2001). Infection control in the ICU. Chest, 120(6), 2059–2093. https://doi.org/10.1378/CHEST.120.6.2059
dc.relationEl-Mowafy, S. A., Abd El Galil, K. H., Habib, E. S. E., & Shaaban, M. I. (2017). Quorum sensing inhibitory activity of sub-inhibitory concentrations of β-lactams. African Health Sciences, 17(1), 199–207. https://doi.org/10.4314/ahs.v17i1.25
dc.relationEl-Shaer, S., Shaaban, M., Barwa, R., & Hassan, R. (2016). Control of quorum sensing and virulence factors of Pseudomonas aeruginosa using phenylalanine arginyl β-naphthylamide. Journal of Medical Microbiology, 65(10), 1194–1204. https://doi.org/10.1099/JMM.0.000327
dc.relationEspinoza, D. I., & Esparza, G. F. (2021). Resistencia enzimática en Pseudomonas aeruginosa, aspectos clínicos y de laboratorio. Revista Chilena de Infectología, 38(1), 69–80. https://doi.org/10.4067/S0716-10182021000100069
dc.relationFarfan, J. P., & Paladines, J. A. (2019). Prevalencia y tasa de letalidad de infecciones por microorganismos multirresistentes en los pacientes sépticos en la unidad de cuidados intensivos del hospital general iess quevedo en el periodo del 2017-2018. Universidad Católica de Santiago de Guayaquil.
dc.relationFarhana Syed Ab Rahman, S. (2016). Piper sarmentosum Roxb. : A Mini Review of Ethnobotany, Phytochemistry and Pharmacology. Journal of Analytical & Pharmaceutical Research, 2(5). https://doi.org/10.15406/japlr.2016.02.00031
dc.relationFilloux A, & Ramos J. (2014). Pseudomonas Methods and Protocols Methods in Molecular Biology 1149 (A. Filloux & J.-L. Ramos, Eds.; Vol. 1149). Springer New York. https://doi.org/10.1007/978-1-4939-0473-0
dc.relationFonnegra G., R., & Jiménez R., S. L. (1999). Plantas medicinales aprobadas en Colombia. Salud y Enfermedad. Lecturas Básicas En Sociología de La Medicina, 3–22. https://doi.org/10.3/JQUERY-UI.JS
dc.relationFosberg, F. R., Schultes, R. E., & Raffauf, R. F. (1990). The Healing Forest: Medicinal and Toxic Plants of the Northwest Amazonia. En undefined (Vol. 40, Issue 1). Wiley. https://doi.org/10.2307/1222960
dc.relationFriedrich, U., Siems, K., Solis, P. N., Gupta, M. P., & Jenett-Siems, K. (2005). New prenylated benzoic acid derivatives of Piper hispidum. Die Pharmazie, 60(6), 455–457. https://doi.org/10.1002/CHIN.200541203
dc.relationGalvis, M., & Torres, M. (2017). Etnobotánica y usos de las plantas de la comunidad rural de Sogamoso, Boyacá, Colombia. Revista de Investigación Agraria y Ambiental, 8(2).
dc.relationGarcía Barriga, H. (1992). Flora medicinal de Colombia : botánica médica. Instituto de Ciencias Naturales,.
dc.relationGermen. (2019). Perfiles de sensibilidad a antibióticos de Pseudomonas aeruginosa en UCI. http://www.grupogermen.org/pdf/pseudomonas_aeruginosa_12_14.pdf
dc.relationGhosh, R., Darin, K., Nath, P., & Deb, P. (2014). An Overview of Various Piper Species for Their Biological Activities. International Journal of Pharma Research & Review, 3(1), 67–75.
dc.relationGómez-Calvario, V., & Rios, M. Y. (2019). 1H and 13C NMR data, occurrence, biosynthesis, and biological activity of Piper amides. Magnetic Resonance in Chemistry, 57(12), 994–1070. https://doi.org/10.1002/MRC.4857
dc.relationGonzález, B., Mora, M., & Clavijo, M. (2001). Estudio etnobotánico de las plantas medicinales empleadas por la comunidad rural de Zaque-municipio de Gachetá, Cundinamarca. Tecné, Episteme y Didaxis: TED, 0(9). https://doi.org/10.17227/ted.num9-5621
dc.relationGonzález, J. M. (2019). Auge, caída y resurgimiento de las enfermedades infecciosas. Biomédica, 39(2), 5–7. http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S0120-41572019000600005
dc.relationGupta, M. P., Correa A, M. D., Solis, P. N., Jones, A., Galdames, C., & Guionneau-Sinclair, F. (1993). Medicinal plant inventory of Kuna Indians: Part 1. Journal of Ethnopharmacology, 40(2), 77–109. https://doi.org/10.1016/0378-8741(93)90054-9
dc.relationGupta, P., Balwani, S., Kumar, S., Aggarwal, N., Rossi, M., Paumier, S., Caruso, F., Bovicelli, P., Saso, L., DePass, A. L., Prasad, A. K., Parmar, V. S., & Ghosh, B. (2010). β-sitosterol among other secondary metabolites of Piper galeatum shows inhibition of TNFα-induced cell adhesion molecule expression on human endothelial cells. Biochimie, 92(9), 1213–1221. https://doi.org/10.1016/J.BIOCHI.2010.06.005
dc.relationHaque, S., Ahmad, F., Dar, S. A., Jawed, A., Mandal, R. K., Wahid, M., Lohani, M., Khan, S., Singh, V., & Akhter, N. (2018). Developments in strategies for Quorum Sensing virulence factor inhibition to combat bacterial drug resistance. Microbial Pathogenesis, 121, 293–302. https://doi.org/10.1016/J.MICPATH.2018.05.046
dc.relationHashim, N. A., Ahmad, F., Salleh, W. M. N. H. W., & Khamis, S. (2019). A New Amide From Piper maingayi Hk.F. (Piperaceae). Natural Product Communications, 14(6), 1934578X1985582. https://doi.org/10.1177/1934578X19855826
dc.relationHernández, T., García-Bores, A. M., Serrano, R., Ávila, G., Dávila, P., Cervantes, H., Peñalosa, I., Flores-Ortiz, C. M., & Lira, R. (2015). Fitoquímica y actividades biológicas de plantas de importancia en la medicina tradicional del Valle de Tehuacán-Cuicatlán. Tip Revista Especializada En Ciencias Químico-Biológicas, 18(2), 116–121. https://doi.org/10.1016/j.recqb.2015.09.003
dc.relationHertiani, T., Tunjung Pratiwi, S. U., Rihardini, M. I., & Cahyaningrum, P. K. (2018). Investigation on Inhibitory Potential of Myrmecodia tuberosa on Quorum Sensing-related Pathogenicity in Pseudomonas aeruginosa PAO1 and Staphylococcus aureus Cowan I Strains. Pakistan Journal of Biological Sciences : PJBS, 21(3), 101–109. https://doi.org/10.3923/PJBS.2018.101.109
dc.relationHidalgo, J., & Woc-Colburn, L. (2020). Highly Infectious Diseases in Critical Care (J. Hidalgo & L. Woc-Colburn, Eds.). Springer International Publishing. https://doi.org/10.1007/978-3-030-33803-9
dc.relationHirakawa, H., & Tomita, H. (2013). Interference of bacterial cell-to-cell communication: a new concept of antimicrobial chemotherapy breaks antibiotic resistance. Frontiers in Microbiology, 4(MAY). https://doi.org/10.3389/FMICB.2013.00114
dc.relationHøiby, N., Bjarnsholt, T., Givskov, M., Molin, S., & Ciofu, O. (2010). Antibiotic resistance of bacterial biofilms. International Journal of Antimicrobial Agents, 35(4), 322–332. https://doi.org/10.1016/J.IJANTIMICAG.2009.12.011
dc.relationHolden, M., Swift, S., & Williams, P. (2000). New signal molecules on the quorum-sensing block. Trends in Microbiology, 8(3), 101–103. https://doi.org/10.1016/S0966-842X(00)01718-2
dc.relationHortal, M. (2015). Enfermedades infecciosas emergentes y reemergentes: información actualizada. Rev Méd Urug, 31(4), 52–58.
dc.relationHossain, M. A., Sattenapally, N., Parikh, H. I., Li, W., Rumbaugh, K. P., & German, N. A. (2020). Design, synthesis, and evaluation of compounds capable of reducing Pseudomonas aeruginosa virulence. European Journal of Medicinal Chemistry, 185, 111800. https://doi.org/10.1016/J.EJMECH.2019.111800
dc.relationIgnak, S., Nakipoglu, Y., & Gurler, B. (2017). Frequency of antiseptic resistance genes in clinical staphycocci and enterococci isolates in Turkey. Antimicrobial Resistance and Infection Control, 6(1), 1–7. https://doi.org/10.1186/S13756-017-0244-6/TABLES/5
dc.relationINS. (2022). Boletín epidemiológico semanal: Semana epidemiológica 24 12 al 18 de junio de 2022.
dc.relationJakobsen, T. H., Bragason, S. K., Phipps, R. K., Christensen, L. D., van Gennip, M., Alhede, M., Skindersoe, M., Larsen, T. O., Høiby, N., Bjarnsholt, T., & Givskov, M. (2012). Food as a source for quorum sensing inhibitors: iberin from horseradish revealed as a quorum sensing inhibitor of Pseudomonas aeruginosa. Applied and Environmental Microbiology, 78(7), 2410–2421. https://doi.org/10.1128/AEM.05992-11
dc.relationJames Bound, D., Murthy, P. S., Negi, P. S., & Srinivas, P. (2020). Evaluation of anti-quorum sensing and antimutagenic activity of 2,3-unsaturated and 2,3-dideoxyglucosides of terpene phenols and alcohols. LWT, 122. https://doi.org/10.1016/J.LWT.2019.108987
dc.relationJaramillo, M. A., Callejas, R., Davidson, C., Smith, J. F., Stevens, A. C., & Tepe, E. J. (2008). A phylogeny of the tropical genus Piper using ITS and the chloroplast intron psbJ-petA. Systematic Botany, 33(4), 647–660. https://doi.org/10.1600/036364408786500244
dc.relationJeyanthi, V., Velusamy, P., Kumar, G. V., & Kiruba, K. (2021). Effect of naturally isolated hydroquinone in disturbing the cell membrane integrity of Pseudomonas aeruginosa MTCC 741 and Staphylococcus aureus MTCC 740. Heliyon, 7(5). https://doi.org/10.1016/J.HELIYON.2021.E07021
dc.relationKarakonstantis, S., Kritsotakis, E. I., & Gikas, A. (2020). Pandrug-resistant gram-negative bacteria: A systematic review of current epidemiology, prognosis and treatment options. En Journal of Antimicrobial Chemotherapy (Vol. 75, Issue 2, pp. 271–282). Oxford University Press. https://doi.org/10.1093/jac/dkz401
dc.relationKaratuna, O., & Yagci, A. (2010). Analysis of quorum sensing-dependent virulence factor production and its relationship with antimicrobial susceptibility in Pseudomonas aeruginosa respiratory isolates. Clinical Microbiology and Infection : The Official Publication of the European Society of Clinical Microbiology and Infectious Diseases, 16(12), 1770–1775. https://doi.org/10.1111/J.1469-0691.2010.03177.X
dc.relationKarbasizade, V., Dehghan, P., Sichani, M. M., Shahanipoor, K., Sepahvand, S., Jafari, R., & Yousefian, R. (2017). Evaluation of three plant extracts against biofilm formation and expression of quorum sensing regulated virulence factors in Pseudomonas aeruginosa. Pakistan Journal of Pharmaceutical Sciences, 30(2(Suppl.)), 585–589. https://pubmed.ncbi.nlm.nih.gov/28650325/
dc.relationKostylev, M., Kim, D. Y., Smalley, N. E., Salukhe, I., Peter Greenberg, E., & Dandekar, A. A. (2019). Evolution of the Pseudomonas aeruginosa quorum-sensing hierarchy. Proceedings of the National Academy of Sciences of the United States of America, 116(14), 7027–7032. https://doi.org/10.1073/PNAS.1819796116/SUPPL_FILE/PNAS.1819796116.SAPP.PDF
dc.relationKothari, V., Sharma, S., & Padia, D. (2017). Recent research advances on Chromobacterium violaceum. Asian Pacific Journal of Tropical Medicine, 10(8), 744–752. https://doi.org/10.1016/J.APJTM.2017.07.022
dc.relationKushwaha, M., Jain, S. K., Sharma, N., Abrol, V., Jaglan, S., & Vishwakarma, R. A. (2018). Establishment of LCMS Based Platform for Discovery of Quorum Sensing Inhibitors: Signal Detection in Pseudomonas aeruginosa PAO1. ACS Chemical Biology, 13(3), 657–665. https://doi.org/10.1021/ACSCHEMBIO.7B00875/SUPPL_FILE/CB7B00875_SI_001.PDF
dc.relationLakshmanan, D., Nanda, J., & Jeevaratnam, K. (2018). Inhibition of Swarming motility of Pseudomonas aeruginosa by Methanol extracts of Alpinia officinarum Hance. and Cinnamomum tamala T. Nees and Eberm. Natural Product Research, 32(11), 1307–1311. https://doi.org/10.1080/14786419.2017.1340289
dc.relationLeal, A., Arturo, C., Jorge, Á., Cortes María, A., & Ovalle, V. (2017). Análisis de la vigilancia de la resistencia bacteriana año 2016. Componente pediátrico y adulto. Boletín Informativo GREBO, 9. www.grebo.org
dc.relationLeal, A. L., Arturo, C., Jorge, Á., Cortes, A., & Ovalle, M. V. (2014). Análisis de la vigilancia de la resistencia bacteriana año 2013. Componente pediátrico y adulto. Boletín Informativo GREBO. www.grebo.org
dc.relationLeal, S. M., Pino, N., Stashenko, E. E., Martínez, J. R., & Escobar, P. (2013). Antiprotozoal activity of essential oils derived from Piper spp. grown in Colombia. Journal of Essential Oil Research, 25(6), 512–519. https://doi.org/10.1080/10412905.2013.820669
dc.relationLee, J., & Zhang, L. (2015). The hierarchy quorum sensing network in Pseudomonas aeruginosa. Protein & Cell, 6(1), 26–41. https://doi.org/10.1007/s13238-014-0100-x
dc.relationLi, D. lin, & Xing, F. wu. (2016). Ethnobotanical study on medicinal plants used by local Hoklos people on Hainan Island, China. Journal of Ethnopharmacology, 194, 358–368. https://doi.org/10.1016/J.JEP.2016.07.050
dc.relationLi, Q., Mao, S., Wang, H., & Ye, X. (2022). The Molecular Architecture of Pseudomonas aeruginosa Quorum-Sensing Inhibitors. Marine Drugs 2022, Vol. 20, Page 488, 20(8), 488. https://doi.org/10.3390/MD20080488
dc.relationLignier, P., Estager, J., Kardos, N., Gravouil, L., Gazza, J., Naffrechoux, E., & Draye, M. (2011). Swift and efficient sono-hydrolysis of nitriles to carboxylic acids under basic condition: Role of the oxide anion radical in the hydrolysis mechanism. Ultrasonics Sonochemistry, 18(1), 28–31. https://doi.org/10.1016/j.ultsonch.2010.04.006
dc.relationLin, R. J., Wu, M. H., Ma, Y. H., Chung, L. Y., Chen, C. Y., & Yen, C. M. (2014). Anthelmintic activities of aporphine from Nelumbo nucifera Gaertn. cv. Rosa-plena against Hymenolepis nana. International Journal of Molecular Sciences, 15(3), 3624–3639. https://doi.org/10.3390/IJMS15033624
dc.relationLiu, C. M., Kao, C. L., Wu, H. M., Li, W. J., Huang, C. T., Li, H. T., & Chen, C. Y. (2014). Antioxidant and anticancer aporphine alkaloids from the leaves of Nelumbo nucifera Gaertn. cv. Rosa-plena. Molecules (Basel, Switzerland), 19(11), 17829–17838. https://doi.org/10.3390/MOLECULES191117829
dc.relationLópez, A., Ming, D. S., & Towers, G. H. N. (2002). Antifungal Activity of Benzoic Acid Derivatives from Piper lanceaefolium. Journal of Natural Products, 65(1), 62–64. https://doi.org/10.1021/np010410g
dc.relationLópez-Causapé, C., Cabot, G., del Barrio-Tofiño, E., & Oliver, A. (2018). The versatile mutational resistome of Pseudomonas aeruginosa. Frontiers in Microbiology, 9(APR), 685. https://doi.org/10.3389/FMICB.2018.00685/BIBTEX
dc.relationLozano, R. (2017). Nuevas estrategias en la lucha contra la resistencia a los antibióticos: Inhibición del quorum sensing. Universidad Complutense.
dc.relationLu, L., Li, M., Yi, G., Liao, L., Cheng, Q., Zhu, J., Zhang, B., Wang, Y., Chen, Y., & Zeng, M. (2022). Screening strategies for quorum sensing inhibitors in combating bacterial infections. Journal of Pharmaceutical Analysis, 12(1), 1–14. https://doi.org/10.1016/J.JPHA.2021.03.009
dc.relationLuís, Â., Duarte, A., Gominho, J., Domingues, F., & Duarte, A. P. (2016). Chemical composition, antioxidant, antibacterial and anti-quorum sensing activities of Eucalyptus globulus and Eucalyptus radiata essential oils. Industrial Crops and Products, 79, 274–282. https://doi.org/10.1016/j.indcrop.2015.10.055
dc.relationLuján Roca, D. Á. (2014). Pseudomonas aeruginosa un adversario peligroso. Acta Bioquímica Clínica Latinoamericana, 48(4), 465–474.
dc.relationLuo, J., Dong, B., Wang, K., Cai, S., Liu, T., Cheng, X., Lei, D., Chen, Y., Li, Y., Kong, J., & Chen, Y. (2017). Baicalin inhibits biofilm formation, attenuates the quorum sensing-controlled virulence and enhances Pseudomonas aeruginosa clearance in a mouse peritoneal implant infection model. PloS One, 12(4). https://doi.org/10.1371/JOURNAL.PONE.0176883
dc.relationMaciej, S., Becker, F. G., Cleary, M., Team, R. M., Holtermann, H., The, D., Agenda, N., Science, P., Sk, S. K., Hinnebusch, R., Hinnebusch A, R., Rabinovich, I., Olmert, Y., Uld, D. Q. G. L. Q., Ri, W. K. H. U., Lq, V., Frxqwu, W. K. H., Zklfk, E., Edvhg, L. v, … Sambanis, N. (2011). Introduction, Phytochemistry, traditional uses and biological activity of genus Piper: A review. International Journal of Current Pharmaceutical Review and Research, 2(2), 130–144. https://doi.org/10.2/JQUERY.MIN.JS
dc.relationMahavy, C. E., Duez, P., ElJaziri, M., & Rasamiravaka, T. (2020). African Plant-Based Natural Products with Antivirulence Activities to the Rescue of Antibiotics. Antibiotics, 9(11), 830. https://doi.org/10.3390/antibiotics9110830
dc.relationMajik, M. S., Naik, D., Bhat, C., Tilve, S., Tilvi, S., & D’Souza, L. (2013). Synthesis of (R)-norbgugaine and its potential as quorum sensing inhibitor against Pseudomonas aeruginosa. Bioorganic & Medicinal Chemistry Letters, 23(8), 2353–2356. https://doi.org/10.1016/J.BMCL.2013.02.051
dc.relationMajolo, C., Monteiro, P. C., Nascimento, A. V. P. do, Chaves, F. C. M., Gama, P. E., Bizzo, H. R., & Chagas, E. C. (2019). Essential Oils from Five Brazilian Piper Species as Antimicrobials Against Strains of Aeromonas hydrophila. Https://Doi.Org/10.1080/0972060X.2019.1645047, 22(3), 746–761. https://doi.org/10.1080/0972060X.2019.1645047
dc.relationMalgaonkar, A., & Nair, M. (2019). Quorum sensing in Pseudomonas aeruginosa mediated by RhlR is regulated by a small RNA PhrD. Scientific Reports, 9(1), 432. https://doi.org/10.1038/s41598-018-36488-9
dc.relationMartín-Rodríguez, A. J., Ticona, J. C., Jiménez, I. A., Flores, N., Fernández, J. J., & Bazzocchi, I. L. (2015). Flavonoids from Piper delineatum modulate quorum-sensing-regulated phenotypes in Vibrio harveyi. Phytochemistry, 117, 98–106. https://doi.org/10.1016/J.PHYTOCHEM.2015.06.006
dc.relationMaxwell, A., & Rampersad, D. (1989). B-phenylethylamine-derived amides from Piper guayranum. Journal of Natural Products, 52(2), 411–414.
dc.relationMcClean, K. H., Winson, M. K., Fish, L., Taylor, A., Chhabra, S. R., Camara, M., Daykin, M., Lamb, J. H., Swift, S., Bycroft, B. W., Stewart, G. S. A. B., & Williams, P. (1997). Quorum sensing and Chromobacterium violaceum: exploitation of violacein production and inhibition for the detection of N-acylhomoserine lactones. Microbiology (Reading, England), 143 ( Pt 12)(12), 3703–3711. https://doi.org/10.1099/00221287-143-12-3703
dc.relationMendoza, J. G., Maguiña, C., & González, F. (2019). La resistencia a los antibióticos: un problema muy serio . Acta Med Peru, 36(2), 145–151.
dc.relationMohabi, S., Kalantar-Neyestanaki, D., & Mansouri, S. (2017). Inhibition of quorum sensing-controlled virulence factor production in Pseudomonas aeruginosa by Quercus infectoria gall extracts. Iranian Journal of Microbiology, 9(1), 26. /pmc/articles/PMC5534001/
dc.relationMohajeri, M., Ebrahimi, S. N., Gholamnia, M., & Bayati, M. (2023). Naturally Occurring Quorum Sensing Inhibitors for Pseudomonas aeruginosa by Molecular Modeling. Biointerface Research in Applied Chemistry, 13(2). https://doi.org/10.33263/BRIAC132.147
dc.relationMolina, F. J., Díaz, C. A., Barrera, L., de La Rosa, G., Dennis, R., Dueñas, C., Granados, M., Londoño, D., Ortiz, G., Rodríguez, F., & Jaimes, F. (2011). Perfil microbiológico de la Infecciones en Unidades de Cuidados Intensivos de Colombia (EPISEPSIS Colombia). Medicina Intensiva, 35(2), 75–83. https://doi.org/10.1016/j.medin.2010.11.003
dc.relationMuñoz, D. R., Sandoval-Hernandez, A. G., Delgado, W. A., Arboleda, G. H., & Cuca, L. E. (2018). In vitro anticancer screening of Colombian plants from Piper genus (Piperaceae). Journal of Pharmacognosy and Phytotherapy, 10(9), 174–181. https://doi.org/10.5897/JPP2018.0509
dc.relationMuñoz-Schick, M., Moreira-Muñoz, A., & Moreira Espinoza, S. (2012). Origen del nombre de los géneros de plantas vasculares nativas de Chile y su representatividad en Chile y el mundo. Gayana. Botánica, 69(2), 309–359. https://doi.org/10.4067/S0717-66432012000200011
dc.relationMurray, C. J., Ikuta, K. S., Sharara, F., Swetschinski, L., Robles Aguilar, G., Gray, A., Han, C., Bisignano, C., Rao, P., Wool, E., Johnson, S. C., Browne, A. J., Chipeta, M. G., Fell, F., Hackett, S., Haines-Woodhouse, G., Kashef Hamadani, B. H., Kumaran, E. A. P., McManigal, B., … Naghavi, M. (2022). Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis. The Lancet, 399(10325), 629–655. https://doi.org/10.1016/S0140-6736(21)02724-0
dc.relationNagori, K., Singh, K., Alexander, A., Kumar, T., Dewangan, D., Badwaik, H., & Tripathi, D. K. (2011). Piper betle L.: A review on its ethnobotany, phytochemistry, pharmacological profile and profiling by new hyphenated technique DART-MS (Direct Analysis in Real Time Mass Spectrometry). Journal of Pharmacy Research, 4(9), 2991–2997. www.jpronline.info
dc.relationNamaki, M., Habibzadeh, S., Vaez, H., Arzanlou, M., Safarirad, S., Bazghandi, S. A., Sahebkar, A., & Khademi, F. (2022). Prevalence of resistance genes to biocides in antibiotic-resistant Pseudomonas aeruginosa clinical isolates. Molecular Biology Reports, 49(3), 2149–2155. https://doi.org/10.1007/S11033-021-07032-2/TABLES/4
dc.relationNavickiene, H. M. D., Morandim, A. de A., Alécio, A. C., Regasini, L. O., Bergamo, D. C. B., Telascrea, M., Cavalheiro, A. J., Lopes, M. N., Bolzani, V. da S., Furlan, M., Marques, M. O. M., Young, M. C. M., & Kato, M. J. (2006). Composition and antifungal activity of essential oils from Piper aduncum, Piper arboreum and Piper tuberculatum. Química Nova, 29(3), 467–470. https://doi.org/10.1590/S0100-40422006000300012
dc.relationNiewiadomska, A. M., Jayabalasingham, B., Seidman, J. C., Willem, L., Grenfell, B., Spiro, D., & Viboud, C. (2019). Population-level mathematical modeling of antimicrobial resistance: a systematic review. BMC Medicine 2019 17:1, 17(1), 1–20. https://doi.org/10.1186/S12916-019-1314-9
dc.relationNoriega, P., Guerrini, A., Sacchetti, G., Grandini, A., Ankuash, E., & Manfredini, S. (2019). Chemical Composition and Biological Activity of Five Essential Oils from the Ecuadorian Amazon Rain Forest. Molecules 2019, Vol. 24, Page 1637, 24(8), 1637. https://doi.org/10.3390/MOLECULES24081637
dc.relationOchoa, S. A., López-Montiel, F., Escalona, G., Cruz-Córdova, A., Dávila, L. B., López-Martínez, B., Jiménez-Tapia, Y., Giono, S., Eslava, C., Hernández-Castro, R., Xicohtencatl-Cortes, J., Gea González, M., Becario, " *, & México, P. (2013). Características patogénicas de cepas de Pseudomonas aeruginosa resistentes a carbapenémicos, asociadas con la formación de biopelículas. Bol Med Hosp Infant Mex, 70(2), 138–150. www.medigraphic.org.mx
dc.relationOlivero V, J. T., Pájaro C, N. P., & Stashenko, E. (2011). Antiquorum sensing activity of essential oils isolated from different species of the genus Piper. Vitae, 18(1), 77–82.
dc.relationOlivero-Verbel, J., Güette-Fernandez, J., & Stashenko, E. (2009). Acute toxicity against Artemia franciscana of essential oils isolated from plants of the genus Lippia and Piper collected in Colombia. Boletín Latinoamericano y Del Caribe de Plantas Medicinales y Aromáticas, 8(5), 419–427. https://www.redalyc.org/articulo.oa?id=85611977008
dc.relationOMS. (2003). Prevención de las infecciones nosocomiales : guía práctica / revisores : G. Ducel, J. Fabry y L. Nicolle. Organización Mundial de La Salud. https://apps.who.int/iris/handle/10665/67877
dc.relationOMS. (2017, febrero 27). La OMS publica lista de bacterias para las que se necesitan con urgencia nuevos antibióticos. Organización Mundial de La Salud. https://www.who.int/news/item/27-02-2017-who-publishes-list-of-bacteria-for-which-new-antibiotics-are-urgently-needed
dc.relationOMS. (2020, diciembre 9). Las 10 principales causas de muerte. Organización Mundial de La Salud. https://www.who.int/news-room/fact-sheets/detail/the-top-10-causes-of-death
dc.relationOMS. (2021). Global Antimicrobial Resistance and Use Surveillance System (GLASS) Report.
dc.relationO’Neill, J. (2016). Tackling drug-resistant infections globally: final report and recommendations.
dc.relationOrjala, J., Erdelmeier, C. A. J., Wright, A. D., Rali, T., & Sticher, O. (1993). Two chromenes and a prenylated benzoic acid derivative from Piper aduncum. Phytochemistry, 34(3), 813–818. https://doi.org/10.1016/0031-9422(93)85364-W
dc.relationOrjala, J., Wright, A., Rali, T., & Sticher, O. (2006). Aduncamide, a Cytotoxic and Antibacterial b-Phenylethylamine-Derived Amide from Piper aduncum. Http://Dx.Doi.Org/10.1080/10575639308043814, 2(3), 231–236. https://doi.org/10.1080/10575639308043814
dc.relationOthman, A. F. M., Rukayadi, Y., & Radu, S. (2019). Inhibition of Pseudomonas aeruginosa Quorum sensing by Curcuma xanthorrhiza Roxb. Extract. Journal of Pure and Applied Microbiology, 13(3), 1335–1347. https://doi.org/10.22207/JPAM.13.3.05
dc.relationO’Toole, G. A. (2011). Microtiter Dish Biofilm Formation Assay. Journal of Visualized Experiments : JoVE, 47. https://doi.org/10.3791/2437
dc.relationO’Toole, G. A., & Kolter, R. (1998). Initiation of biofilm formation in Pseudomonas fluorescens WCS365 proceeds via multiple, convergent signalling pathways: a genetic analysis. Molecular Microbiology, 28(3), 449–461. https://doi.org/10.1046/J.1365-2958.1998.00797.X
dc.relationOuyang, J., Feng, W., Lai, X., Chen, Y., Zhang, X., Rong, L., Sun, F., & Chen, Y. (2020). Quercetin inhibits Pseudomonas aeruginosa biofilm formation via the vfr-mediated lasIR system. Microbial Pathogenesis, 149, 104291. https://doi.org/10.1016/J.MICPATH.2020.104291
dc.relationPang, Z., Raudonis, R., Glick, B. R., Lin, T. J., & Cheng, Z. (2019a). Antibiotic resistance in Pseudomonas aeruginosa: mechanisms and alternative therapeutic strategies. Biotechnology Advances, 37(1), 177–192. https://doi.org/10.1016/J.BIOTECHADV.2018.11.013
dc.relationPaniagua, S. M. (2019). Factores de riesgo asociados a itu por pseudomonas aeruginosa multirresistente en pacientes hospitalizados - Hospital Nacional Dos De Mayo, 2017. Universidad Nacional Federico Villarreal.
dc.relationPapenfort, K., & Bassler, B. L. (2016). Quorum-Sensing Signal-Response Systems in Gram-Negative Bacteria. Nature Reviews. Microbiology, 14(9), 576. https://doi.org/10.1038/NRMICRO.2016.89
dc.relationParmar, V. S., Jain, S. C., Bisht, K. S., Jain, R., Taneja, P., Jha, A., Tyagi, O. D., Prasad, A. K., Wengel, J., Olsen, C. E., & Boll, P. M. (1997). Phytochemistry of the genus Piper. Phytochemistry. https://doi.org/10.1016/S0031-9422(97)00328-2
dc.relationParra Amin, J. E., Cuca, L. E., & González-Coloma, A. (2019). Antifungal and phytotoxic activity of benzoic acid derivatives from inflorescences of Piper cumanense. Natural Product Research, 35(16), 2763–2771. https://doi.org/10.1080/14786419.2019.1662010
dc.relationParra, J. E., Delgado, W. A., & Cuca, L. E. (2011). Cumanensic acid, a new chromene isolated from Piper cf. cumanense Kunth. (Piperaceae). Phytochemistry Letters, 4(3), 280–282. https://doi.org/10.1016/J.PHYTOL.2011.04.015
dc.relationParsek, M. R., Val, D. L., Hanzelka, B. L., Cronan, J. E., & Greenberg, E. P. (1999). Acyl homoserine-lactone quorum-sensing signal generation. Proceedings of the National Academy of Sciences of the United States of America, 96(8), 4360–4365. https://doi.org/10.1073/PNAS.96.8.4360/ASSET/3B04D4E7-6DEB-4984-B12A-716C44025169/ASSETS/GRAPHIC/PQ0790513005.JPEG
dc.relationPatiño, W. R., Prieto, J. A., Suárez, L. E. C., Ávila, M. C., & Patiño, O. J. (2018). Caracterización química y biológica de los extractos etanólicos de Piper asperiusculum y Piper pertomentellum. Revista Cubana de Plantas Medicinales, 23(1). http://revplantasmedicinales.sld.cu/index.php/pla/article/view/576/241
dc.relationPatiño-Bayona, W. R., Nagles Galeano, L. J., Bustos Cortes, J. J., Delgado Ávila, W. A., Herrera Daza, E., Cuca Suárez, L. E., Prieto-Rodríguez, J. A., Patiño-Ladino, O. J., Galeano, N., Bustos Cortes, L. J. ;, Delgado Ávila, J. J. ;, Herrera Daza, W. A. ;, Suárez, E. ;, Prieto-Rodríguez, L. E. C. ;, & Patiño-Ladino, J. A. ; (2021). Effects of Essential Oils from 24 Plant Species on Sitophilus zeamais Motsch (Coleoptera, Curculionidae). Insects 2021, Vol. 12, Page 532, 12(6), 532. https://doi.org/10.3390/INSECTS12060532
dc.relationPaz-Zarza, V. M., Mangwani-Mordani, S., Martínez-Maldonado, A., Álvarez-Hernández, D., Solano-Gálvez, S. G., Vázquez-López, R., Paz-Zarza, V. M., Mangwani-Mordani, S., Martínez-Maldonado, A., Álvarez-Hernández, D., Solano-Gálvez, S. G., & Vázquez-López, R. (2019). Pseudomonas aeruginosa: patogenicidad y resistencia antimicrobiana en la infección urinaria. Revista Chilena de Infectología, 36(2), 180–189. https://doi.org/10.4067/S0716-10182019000200180
dc.relationPeerzada, Z., Kanhed, A. M., & Desai, K. B. (2022). Effects of active compounds from Cassia fistula on quorum sensing mediated virulence and biofilm formation in Pseudomonas aeruginosa. RSC Advances, 12(24), 15196–15214. https://doi.org/10.1039/D1RA08351A
dc.relationPejin, B., Iodice, C., Tommonaro, G., Stanimirovic, B., Ciric, A., Glamoclija, J., Nikolic, M., Rosa, S., & Sokovic, M. (2014). Further in vitro Evaluation of Antimicrobial Activity of the Marine Sesquiterpene Hydroquinone Avarol. Current Pharmaceutical Biotechnology, 15(6), 583–588. https://doi.org/10.2174/138920101506140910152253
dc.relationPOWO. (2022). Plants of the World Online. En Facilitado por Royal Botanic Gardens, Kew. https://powo.science.kew.org/cite-us
dc.relationPuzi, S., Sama, O., & Sule, A. (2011). Actividad antimicrobiana selectiva de Piper sarmentosum (kaduk) contra Pseudomonas aeroginosa. Temas Actuales En Investigación Nutracéutica, 9, 31–34. https://www.researchgate.net/publication/289653857_Selective_antimicrobial_activity_of_Piper_sarmentosum_kaduk_against_Pseudomonas_aeroginosa
dc.relationQin, S., Xiao, W., Zhou, C., Pu, Q., Deng, X., Lan, L., Liang, H., Song, X., & Wu, M. (2022). Pseudomonas aeruginosa: pathogenesis, virulence factors, antibiotic resistance, interaction with host, technology advances and emerging therapeutics. Signal Transduction and Targeted Therapy 2022 7:1, 7(1), 1–27. https://doi.org/10.1038/s41392-022-01056-1
dc.relationRai, N., Rai, R., & Venkatesh, K. v. (2015). Quorum Sensing Biosensors. En Quorum Sensing vs Quorum Quenching: A Battle with No End in Sight (pp. 173–183). Springer India. https://doi.org/10.1007/978-81-322-1982-8_16
dc.relationRajkumari, J., Borkotoky, S., Murali, A., & Busi, S. (2018). Anti-quorum sensing activity of Syzygium jambos (L.) Alston against Pseudomonas aeruginosa PAO1 and identification of its bioactive components. South African Journal of Botany, 118, 151–157. https://doi.org/10.1016/j.sajb.2018.07.004
dc.relationRasamiravaka, T., Labtani, Q., Duez, P., & el Jaziri, M. (2015). The formation of biofilms by pseudomonas aeruginosa: A review of the natural and synthetic compounds interfering with control mechanisms. En BioMed Research International (Vol. 2015). Hindawi Limited. https://doi.org/10.1155/2015/759348
dc.relationRasko, D. A., & Sperandio, V. (2010). Anti-virulence strategies to combat bacteria-mediated disease. Nature Reviews Drug Discovery, 9(2), 117–128. https://doi.org/10.1038/nrd3013
dc.relationRather, M. A., Gupta, K., & Mandal, M. (2021). Inhibition of biofilm and quorum sensing-regulated virulence factors in Pseudomonas aeruginosa by Cuphea carthagenensis (Jacq.) J. F. Macbr. Leaf extract: An in vitro study. Journal of Ethnopharmacology, 269, 113699. https://doi.org/10.1016/J.JEP.2020.113699
dc.relationRather, M. A., Saha, D., Bhuyan, S., Jha, A. N., & Mandal, M. (2022). Quorum Quenching: A Drug Discovery Approach Against Pseudomonas aeruginosa. Microbiological Research, 264, 127173. https://doi.org/10.1016/J.MICRES.2022.127173
dc.relationRatridewi, I., Dzulkarnain, S. A., Wijaya, A. B., Huwae, J. T. R., Putra, D. S. M., Barlianto, W., Santoso, S., & Santosaningsih, D. (2021). Effects of Piper betle Leaf Extract on Biofilm and Rhamnolipid Formation of Pseudomonas aeruginosa. Research Journal of Pharmacy and Technology, 14(10), 5182–5186. https://doi.org/10.52711/0974-360X.2021.00901
dc.relationRazakova, D. M., Bessonova, I. A., & Yunusov, S. Y. (1984). Components ofHaplophyllum obtusifolium. Chemistry of Natural Compounds 1985 20:5, 20(5), 599–600. https://doi.org/10.1007/BF00580074
dc.relationRekha, P. D., Vasavi, H. S., Vipin, C., Saptami, K., & Arun, A. B. (2017). A medicinal herb Cassia alata attenuates quorum sensing in Chromobacterium violaceum and Pseudomonas aeruginosa. Letters in Applied Microbiology, 64(3), 231–238. https://doi.org/10.1111/LAM.12710
dc.relationRestrepo, M. I., Babu, B. L., Reyes, L. F., Chalmers, J. D., Soni, N. J., Sibila, O., Faverio, P., Cilloniz, C., Rodriguez-Cintron, W., Aliberti, S., Aruj, P. K., Attorri, S., Barimboim, E., Caeiro, J. P., Garzón, M. I., Cambursano, V. H., Ceccato, A., Chertcoff, J., Lascar, F., … Labra, L. (2018). Burden and risk factors for Pseudomonas aeruginosa community-acquired pneumonia: a multinational point prevalence study of hospitalised patients. European Respiratory Journal, 52(2). https://doi.org/10.1183/13993003.01190-2017
dc.relationRivera, M. L. C., Hassimotto, N. M. A., Bueris, V., Sircili, M. P., de Almeida, F. A., & Pinto, U. M. (2019). Effect of Capsicum Frutescens Extract, Capsaicin, and Luteolin on Quorum Sensing Regulated Phenotypes. Journal of Food Science, 84(6), 1477–1486. https://doi.org/10.1111/1750-3841.14648
dc.relationRocha, A. J., de Oliveira Barsottini, M. R., Rocha, R. R., Laurindo, M. V., de Moraes, F. L. L., & da Rocha, S. L. (2019). Pseudomonas Aeruginosa: Virulence Factors and Antibiotic Resistance Genes. Brazilian Archives of Biology and Technology, 62, 1–15. https://doi.org/10.1590/1678-4324-2019180503
dc.relationRoersch, C. M. F. B. (2010). Piper umbellatum L.: a comparative cross-cultural analysis of its medicinal uses and an ethnopharmacological evaluation. Journal of Ethnopharmacology, 131(3), 522–537. https://doi.org/10.1016/J.JEP.2010.07.045
dc.relationSaeki, E. K., Kobayashi, R. K. T., & Nakazato, G. (2020). Quorum sensing system: Target to control the spread of bacterial infections. Microbial Pathogenesis, 142, 104068. https://doi.org/10.1016/J.MICPATH.2020.104068
dc.relationSalehi, B., Zakaria, Z. A., Gyawali, R., Ibrahim, S. A., Rajkovic, J., Shinwari, Z. K., Khan, T., Sharifi-Rad, J., Ozleyen, A., Turkdonmez, E., Valussi, M., Tumer, T. B., Fidalgo, L. M., Martorell, M., & Setzer, W. N. (2019). Piper species: A comprehensive review on their phytochemistry, biological activities and applications. En Molecules (Vol. 24, Issue 7). MDPI AG. https://doi.org/10.3390/molecules24071364
dc.relationSalinas, C., Hernández, A., Oropeza, R., Olvera, C., Poblano, M., & Franco, J. (2010). Colistin en el tratamiento de infección por Pseudomonas aeruginosa multidrogorresistente. Revista de La Asociación Mexicana de Medicina Critica y Terapia Intensiva, XXIV(4), 173–177.
dc.relationSalmanov, A., Litus, V., Vdovychenko, S., Litus, O., Davtian, L., Ubogov, S., Bisyuk, Y., Drozdova, A., & Vlasenko, I. (2019). Healthcare-associated infections in intensive care units. Wiadomosci Lekarskie (Warsaw, Poland : 1960), 72(5 cz 2), 963–969. https://doi.org/10.36740/wlek201905201
dc.relationSamame, L. M., & Samalvides, F. (2014). Eficacia del proceso de limpieza y desinfección de los endoscopios en un hospital de nivel III. Revista Medica Herediana, 25(4), 208–214. http://www.scielo.org.pe/scielo.php?script=sci_arttext&pid=S1018-130X2014000400005
dc.relationSanthakumari, S., & Ravi, A. v. (2019). Targeting quorum sensing mechanism: An alternative anti-virulent strategy for the treatment of bacterial infections. South African Journal of Botany, 120, 81–86. https://doi.org/10.1016/J.SAJB.2018.09.028
dc.relationSen, S., Dayanandan, S., Davis, T., Ganesan, R., Jagadish, M. R., Mathew, P. J., & Ravikanth, G. (2019). Origin and evolution of the genus Piper in Peninsular India. Molecular Phylogenetics and Evolution, 138, 102–113. https://doi.org/10.1016/J.YMPEV.2019.05.033
dc.relationSerra-Valdés, M. Á. (2017). La resistencia microbiana en el contexto actual y la importancia del conocimiento y aplicación en la política antimicrobiana. Revista Habanera de Ciencias Médicas, 402–419. http://www.revhabanera.sld.cu/index.php/rhab/article/view/2013
dc.relationSethupathy, S., Ananthi, S., Selvaraj, A., Shanmuganathan, B., Vigneshwari, L., Balamurugan, K., Mahalingam, S., & Pandian, S. K. (2017). Vanillic acid from Actinidia deliciosa impedes virulence in Serratia marcescens by affecting S-layer, flagellin and fatty acid biosynthesis proteins. Scientific Reports 2017 7:1, 7(1), 1–17. https://doi.org/10.1038/s41598-017-16507-x
dc.relationSethupathy, S., Prasath, K. G., Ananthi, S., Mahalingam, S., Balan, S. Y., & Pandian, S. K. (2016). Proteomic analysis reveals modulation of iron homeostasis and oxidative stress response in Pseudomonas aeruginosa PAO1 by curcumin inhibiting quorum sensing regulated virulence factors and biofilm production. Journal of Proteomics, 145, 112–126. https://doi.org/10.1016/J.JPROT.2016.04.019
dc.relationSiddiqui, B. S., Gulzar, T., Begum, S., Afshan, F., & Sattar, F. A. (2005). Insecticidal amides from fruits of Piper nigrum Linn. Natural Product Research, 19(2), 143–150. https://doi.org/10.1080/14786410410001704750
dc.relationSiges, T. H., Hartemink, A. E., Hebinck, P., & Allen, B. J. (2005). The Invasive Shrub Piper aduncum and Rural Livelihoods in the Finschhafen Area of Papua New Guinea. Human Ecology 2005 33:6, 33(6), 875–893. https://doi.org/10.1007/S10745-005-8214-7
dc.relationSilalahi, M., Supriatna, J., Walujo, E. B., & Nisyawati. (2015). Local knowledge of medicinal plants in sub-ethnic Batak Simalungun of North Sumatra, Indonesia. Biodiversitas, 16(1), 44–54. https://doi.org/10.13057/BIODIV/D160106
dc.relationSilva, A., Silva, V., Igrejas, G., & Poeta, P. (2020). Chapter 17: Carbapenems and Pseudomonas aeruginosa: Mechanisms and epidemiology. En Antibiotics and Antimicrobial Resistance Genes in the Environment: Volume 1 in the Advances in Environmental Pollution Research Series (Vol. 1, pp. 253–268). Elsevier. https://doi.org/10.1016/B978-0-12-818882-8.00017-6
dc.relationSingh, N., Patil, A., Prabhune, A., & Goel, G. (2016). Inhibition of quorum-sensing-mediated biofilm formation in Cronobacter sakazakii strains. Microbiology (United Kingdom), 162(9), 1708–1714. https://doi.org/10.1099/MIC.0.000342/CITE/REFWORKS
dc.relationSkariyachan, S., Sridhar, V. S., Packirisamy, S., Kumargowda, S. T., & Challapilli, S. B. (2018). Recent perspectives on the molecular basis of biofilm formation by Pseudomonas aeruginosa and approaches for treatment and biofilm dispersal. Folia Microbiologica 2018 63:4, 63(4), 413–432. https://doi.org/10.1007/S12223-018-0585-4
dc.relationSmith, K. F., Goldberg, M., Rosenthal, S., Carlson, L., Chen, J., Chen, C., & Ramachandran, S. (2014). Global rise in human infectious disease outbreaks. Journal of the Royal Society Interface, 11(101). https://doi.org/10.1098/RSIF.2014.0950
dc.relationSmith, K., & Hunter, I. S. (2008). Efficacy of common hospital biocides with biofilms of multi-drug resistant clinical isolates. Journal of Medical Microbiology, 57(Pt 8), 966–973. https://doi.org/10.1099/JMM.0.47668-0
dc.relationSolomon, S. L., & Oliver, K. B. (2014). Antibiotic Resistance Threats in the United States: Stepping Back from the Brink. Number, 89. www.aafp.org/afp.
dc.relationSommer, R., Rox, K., Wagner, S., Hauck, D., Henrikus, S. S., Newsad, S., Arnold, T., Ryckmans, T., Brönstrup, M., Imberty, A., Varrot, A., Hartmann, R. W., & Titz, A. (2019). Anti-biofilm Agents against Pseudomonas aeruginosa: A Structure-Activity Relationship Study of C-Glycosidic LecB Inhibitors. Journal of Medicinal Chemistry, 62(20), 9201–9216. https://doi.org/10.1021/ACS.JMEDCHEM.9B01120/SUPPL_FILE/JM9B01120_SI_002.CSV
dc.relationSong, D., Bi, F., Zhang, N., Qin, Y., Liu, X., Teng, Y., & Ma, S. (2020). Design, synthesis of novel 4,5-dihydroisoxazole-containing benzamide derivatives as highly potent FtsZ inhibitors capable of killing a variety of MDR Staphylococcus aureus. Bioorganic & Medicinal Chemistry, 28(21), 115729. https://doi.org/10.1016/J.BMC.2020.115729
dc.relationSotelo, H. (2016). Estado del arte en el uso potencial de extractos vegetales del género piper para el control de plagas agricolas [Universidad Nacional Abierta y a Distancia]. https://repository.unad.edu.co/bitstream/handle/10596/13255/16609297.pdf?sequence=1&isAllowed=y
dc.relationSteindler, L., & Venturi, V. (2007). Detection of quorum-sensing N-acyl homoserine lactone signal molecules by bacterial biosensors. FEMS Microbiology Letters, 266(1), 1–9. https://doi.org/10.1111/J.1574-6968.2006.00501.X
dc.relationStraif-Bourgeois, S., Ratard, R., & Kretzschmar, M. (2014). Infectious Disease Epidemiology. Handbook of Epidemiology, 2041. https://doi.org/10.1007/978-0-387-09834-0_34
dc.relationStuart, B. H. (2004). Infrared Spectroscopy: Fundamentals and Applications. Wiley. https://doi.org/10.1002/0470011149
dc.relationSuroowan, S., & Mahomoodally, M. F. (2016). A comparative ethnopharmacological analysis of traditional medicine used against respiratory tract diseases in Mauritius. Journal of Ethnopharmacology, 177, 61–80. https://doi.org/10.1016/J.JEP.2015.11.029
dc.relationSuwanphakdee, C., Simpson, D. A., Hodkinson, T. R., Chantaranothai, P., & Suwanphakdee, C. (2016). Taxonomic notes on the genus Piper (Piperaceae). https://doi.org/10.5061/dryad.qp50f
dc.relationSweileh, W. M. (2022). Global research activity on mathematical modeling of transmission and control of 23 selected infectious disease outbreak. Globalization and Health, 18(1), 1–14. https://doi.org/10.1186/S12992-022-00803-X/TABLES/6
dc.relationTabak, Y. P., Merchant, S., Ye, G., Vankeepuram, L., Gupta, V., Kurtz, S. G., & Puzniak, L. A. (2019). Incremental clinical and economic burden of suspected respiratory infections due to multi-drug-resistant Pseudomonas aeruginosa in the United States. The Journal of Hospital Infection, 103(2), 134–141. https://doi.org/10.1016/J.JHIN.2019.06.005
dc.relationTan, L. Y., Yin, W. F., & Chan, K. G. (2013). Piper nigrum, Piper betle and Gnetum gnemon- Natural food sources with anti-quorum sensing properties. Sensors (Switzerland), 13(3), 3975–3985. https://doi.org/10.3390/s130303975
dc.relationTangarife-Castaño, V., Correa-Royero, J. B., Roa-Linares, V. C., Pino-Benitez, N., Betancur-Galvis, L. A., Durán, D. C., Stashenko, E. E., & Mesa-Arango, A. C. (2014). Anti-dermatophyte, anti-Fusarium and cytotoxic activity of essential oils and plant extracts of Piper genus. Journal of Essential Oil Research, 26(3), 221–227. https://doi.org/10.1080/10412905.2014.882279
dc.relationTapia-Rodriguez, M. R., Hernandez-Mendoza, A., Gonzalez-Aguilar, G. A., Martinez-Tellez, M. A., Martins, C. M., & Ayala-Zavala, J. F. (2017). Carvacrol as potential quorum sensing inhibitor of Pseudomonas aeruginosa and biofilm production on stainless steel surfaces. Food Control, 75, 255–261. https://doi.org/10.1016/J.FOODCONT.2016.12.014
dc.relationTene, V., Malagón, O., Finzi, P. V., Vidari, G., Armijos, C., & Zaragoza, T. (2007). An ethnobotanical survey of medicinal plants used in Loja and Zamora-Chinchipe, Ecuador. Journal of Ethnopharmacology, 111(1), 63–81. https://doi.org/10.1016/J.JEP.2006.10.032
dc.relationThe plant list. (2021). The Plant List. . http://www.theplantlist.org/
dc.relationThi, M. T. T., Wibowo, D., & Rehm, B. H. A. (2020). Pseudomonas aeruginosa Biofilms. International Journal of Molecular Sciences, 21(22), 8671. https://doi.org/10.3390/ijms21228671
dc.relationTillotson, G. S., & Zinner, S. H. (2017). Burden of antimicrobial resistance in an era of decreasing susceptibility. Http://Dx.Doi.Org/10.1080/14787210.2017.1337508, 15(7), 663–676. https://doi.org/10.1080/14787210.2017.1337508
dc.relationTorres-Hormaza, T., Baquero, A., Jaramillo, A., & Fajardo-Gutiérrez, F. (2020). Flora de Bogotá: Piperaceae. Revista Del Jardín Botánico de Bogotá José Celestino Mutis, 21(1). www.perezarbelaezia.jbb.gov.co
dc.relationTrivedi, M. N., Khemani, A., Vachhani, U. D., Shah, C. P., & Santani, D. D. (2011). Pharmacognostic, phytochemical analysis and antimicrobial activity of two piper species. Pharmacie Globale, 7(5). https://www.researchgate.net/publication/228486454
dc.relationTrujillo, W., & Vargas, V. (2022). Las especies de Piper: en la vertiente amazónica de los Andes, Caquetá. Guía de campo. (Universidad de la Amazonía, Ed.; 1a ed., Vol. 1).
dc.relationTurkina, M. v., & Vikström, E. (2019). Bacteria-Host Crosstalk: Sensing of the Quorum in the Context of Pseudomonas aeruginosa Infections. Journal of Innate Immunity, 11(3), 263–279. https://doi.org/10.1159/000494069
dc.relationUgurlu, A., Karahasan Yagci, A., Ulusoy, S., Aksu, B., & Bosgelmez-Tinaz, G. (2016). Phenolic compounds affect production of pyocyanin, swarming motility and biofilm formation of Pseudomonas aeruginosa. Asian Pacific Journal of Tropical Biomedicine, 8(6), 698–701. https://doi.org/10.1016/J.APJTB.2016.06.008
dc.relationUsman, A. B., Abubakar, S., Alaku, C., & Nnadi, O. (2014). Plant: A Necessity of Life. International Letters of Natural Sciences, 20, 151–159. https://doi.org/10.18052/WWW.SCIPRESS.COM/ILNS.20.151
dc.relationVadakkan, K. (2020). Molecular Mechanism of Bacterial Quorum Sensing and Its Inhibition by Target Specific Approaches. ACS Symposium Series, 1374, 21–234. https://doi.org/10.1021/BK-2020-1374.CH012
dc.relationVallejo, A., Feitosa, A., Gourlart, A., Pires, L., & Mosquera, O. (2014). Tamizaje de acción antimicrobiana de 34 extractos vegetales contra bacilos gramnegativos. Salud Soc. Uptc, 1, 34–39. https://revistas.uptc.edu.co/index.php/salud_sociedad/article/view/3257/3121
dc.relationvan Duijn, P. J., Verbrugghe, W., Jorens, P. G., Spöhr, F., Schedler, D., Deja, M., Rothbart, A., Annane, D., Lawrence, C., Jereb, M., Seme, K., Šifrer, F., Tomič, V., Estevez, F., Carneiro, J., Harbarth, S., & Bonten, M. J. M. (2022). The effects of antibiotic cycling and mixing on acquisition of antibiotic resistant bacteria in the ICU: A post-hoc individual patient analysis of a prospective cluster-randomized crossover study. PLoS ONE, 17(5 May). https://doi.org/10.1371/journal.pone.0265720
dc.relationVandeputte, O. M., Kiendrebeogo, M., Rajaonson, S., Diallo, B., Mol, A., Jaziri, M. el, & Baucher, M. (2010). Identification of catechin as one of the flavonoids from Combretum albiflorum bark extract that reduces the production of quorum-sensing-controlled virulence factors in Pseudomonas aeruginosa PAO1. Applied and Environmental Microbiology, 76(1), 243–253. https://doi.org/10.1128/AEM.01059-09
dc.relationVasavi, H. S., Arun, A. B., & Rekha, P. D. (2016). Anti-quorum sensing activity of flavonoid-rich fraction from Centella asiatica L. against Pseudomonas aeruginosa PAO1. Journal of Microbiology, Immunology and Infection, 49(1), 8–15. https://doi.org/10.1016/j.jmii.2014.03.012
dc.relationVásquez-Giraldo, D. F., Libreros-Zúñiga, G. A., Crespo-Ortiz, M. del P., Vásquez-Giraldo, D. F., Libreros-Zúñiga, G. A., & Crespo-Ortiz, M. del P. (2017). Effects of biocide exposure on P. Aeruginosa, E. coli and A. Baumannii complex isolates from hospital and household environments. Infectio, 21(4), 243–250. https://doi.org/10.22354/IN.V21I4.687
dc.relationVázquez-Martínez, J., Buitemea-Cantúa, G. v., Gutierrez-Villagomez, J. M., García-González, J. P., Ramírez-Chávez, E., & Molina-Torres, J. (2020). Bioautography and GC-MS based identification of piperine and trichostachine as the active quorum quenching compounds in black pepper. Heliyon, 6(1). https://doi.org/10.1016/j.heliyon.2019.e03137
dc.relationVictoria-Munoz, F., Sanchez-Cruz, N., Medina-Franco, J. L., & Lopez-Vallejo, F. (2022). Cheminformatics analysis of molecular datasets of transcription factors associated with quorum sensing in Pseudomonas aeruginosa. RSC Advances, 12(11), 6783–6790. https://doi.org/10.1039/D1RA08352J
dc.relationVijendra Kumar, N., Murthy, P. S., Manjunatha, J. R., & Bettadaiah, B. K. (2014). Synthesis and quorum sensing inhibitory activity of key phenolic compounds of ginger and their derivatives. Food Chemistry, 159, 451–457. https://doi.org/10.1016/J.FOODCHEM.2014.03.039
dc.relationVincent, J. L., Rello, J., Marshall, J., Silva, E., Anzueto, A., Martin, C. D., Moreno, R., Lipman, J., Gomersall, C., Sakr, Y., & Reinhart, K. (2009). International study of the prevalence and outcomes of infection in intensive care units. JAMA, 302(21), 2323–2329. https://doi.org/10.1001/JAMA.2009.1754
dc.relationWang, H., Abbas, K., Abbasifard, M., Abbasi, M., Abbastabar, H., Abd, F., Abdelalim, A., Abolhassani, H., Abreu, L., & Abrigo, M. (2020). Global age-sex-specific fertility, mortality, healthy life expectancy (HALE), and population estimates in 204 countries and territories, 1950–2019: a comprehensive demographic analysis for the Global Burden of Disease Study 2019. Lancet (London, England), 396(10258), 1160. https://doi.org/10.1016/S0140-6736(20)30977-6
dc.relationWeldon, I., Rogers Van Katwyk, S., Burci, G. L., Giur, D., de Campos, T. C., Eccleston-Turner, M., Fryer, H. R., Giubilini, A., Hale, T., Harrison, M., Johnson, S., Kirchhelle, C., Lee, K., Liddell, K., Mendelson, M., Ooms, G., Orbinski, J., Piddock, L. J. v, Røttingen, J.-A., … Hoffman, S. J. (2022). Governing Global Antimicrobial Resistance: 6 Key Lessons From the Paris Climate Agreement. American Journal of Public Health, 112(4), 553–557. https://doi.org/10.2105/AJPH.2021.306695
dc.relationWolff, T., Santos, P. F. P., Valente, L. M. M., Magalhães, A., Tinoco, L. W., Pereira, R. C. A., & Guimarães, E. F. (2015). Piperamides from Piper ottonoides by NMR and GC-MS Based Mixture Analysis. Journal of the Brazilian Chemical Society, 26(11), 2321–2330. https://doi.org/10.5935/0103-5053.20150226
dc.relationZahin, M., Hasan, S., Aqil, F., Sajjad Ahmad Khan, M., Mabood Husain, F., & Ahmad, I. (2010). Screening of certain medicinal plants from India for their anti-quorum sensing activity. En Indian Journal of Experimental Biology (Vol. 48).
dc.relationZaki, A. A. (2013). Assessment of Anti-Quorum Sensing Activity for Some Ornamental and Medicinal Plants Native to Egypt. Scientia Pharmaceutica, 81(1), 251–258. https://doi.org/10.3797/scipharm.1204-26
dc.relationZhao, X., Yu, Z., & Ding, T. (2020). Quorum-Sensing Regulation of Antimicrobial Resistance in Bacteria. Microorganisms 2020, Vol. 8, Page 425, 8(3), 425. https://doi.org/10.3390/MICROORGANISMS8030425
dc.relationZhong, L., Ravichandran, V., Zhang, N., Wang, H., Bian, X., Zhang, Y., & Li, A. (2020). Attenuation of Pseudomonas aeruginosa Quorum Sensing by Natural Products: Virtual Screening, Evaluation and Biomolecular Interactions. International Journal of Molecular Sciences 2020, Vol. 21, Page 2190, 21(6), 2190. https://doi.org/10.3390/IJMS21062190
dc.relationZúñiga Carrasco, I. R., & Caro Lozano, J. (2017). Cultivos ambientales y de superficie: una estrategia de detección oportuna de infecciones nosocomiales. Revista Latinoamericana de Infectología Pediátrica, 30(4), 147–150. www.medigraphic.org.mxFinanciamiento:Ninguno.Conflictodeintereses:Ninguno.Esteartículopuedeserconsultadoenversióncompletaenhttp://www.medigraphic.com/rlip
dc.rightsReconocimiento 4.0 Internacional
dc.rightshttp://creativecommons.org/licenses/by/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.titleEfecto inhibitorio de sustancias provenientes de especies del género Piper sobre Quorum Sensing de Pseudomonas aeruginosa
dc.typeTrabajo de grado - Maestría


Este ítem pertenece a la siguiente institución