dc.contributor | Mendoza Pulido, Juan Camilo | |
dc.contributor | https://orcid.org/0000-0001-9709-7811 | |
dc.creator | Caro Moreno, Julian Enrique | |
dc.date.accessioned | 2023-01-24T20:41:26Z | |
dc.date.available | 2023-01-24T20:41:26Z | |
dc.date.created | 2023-01-24T20:41:26Z | |
dc.date.issued | 2023 | |
dc.identifier | https://repositorio.unal.edu.co/handle/unal/83105 | |
dc.identifier | Universidad Nacional de Colombia | |
dc.identifier | Repositorio Institucional Universidad Nacional de Colombia | |
dc.identifier | https://repositorio.unal.edu.co/ | |
dc.description.abstract | La Parálisis Cerebral (PC) es una condición discapacitante, crónica, no progresiva y permanente, secundaria a una lesión del cerebro fetal inmaduro, que condiciona a limitaciones de predominio motor (alteraciones en el movimiento y la postura); clínicamente la manifestación primaria más frecuente es la espasticidad, y es el signo característico de la alteración motora en la población con PC.
Describir las diferencias entre los resultados de las pruebas funcionales aplicadas antes y después de intervención neuroquirúrgica con Rizotomía Dorsal Selectiva (RDS), en pacientes ambulantes con PC espástica operados entre 2014 al 2022 en el Instituto Roosevelt (IR), además describir las diferencias en el grupo de niños con características clínicas y funcionales similares no operados.
Se trata de un estudio observacional, retrospectivo y descriptivo. Se revisaron las bases de datos disponibles del IR para la selección de niños con PC espástica ambulantes operados de RDS y de los grupos de niños con características similares dentro del periodo mencionado. Tomando como medidas de desenlace las pruebas funcionales como: GMFM-66, 6MWT, PEDI, escala de Ashworth y FMS, con clasificación de GFMCS para los niños operados como para el grupo de emparejamiento.
En el presente estudio se encontró que los niveles iniciales y de seguimiento de GMFCS permanecieron sin cambios como los reportados en la literatura. Además, se puede inferir que el cambio en GMFM-66 en el seguimiento fue significativo comparando con uno de los grupos conformados (grupo número 1), pero no ocurre de igual forma con el grupo número 2 dadas las múltiples limitaciones metodológicas existentes.
El uso de pruebas funcionales como medida de desenlace es una buena estrategia para evaluar la efectividad de la RSD, aunque se deben realizar más estudios y contar con muestra de pacientes más grandes para sacar indicaciones precisas para su aplicación, pero este es un primer paso para que en un futuro su uso sea parte de un protocolo de intervención. (Texto tomado de la fuente) | |
dc.description.abstract | Cerebral Palsy (CP) is a disabling, chronic, non-progressive and permanent
condition, secondary to an immature fetal brain lesion, which conditions predominantly motor
limitations (alterations in movement and posture); Clinically, the most common primary
manifestation is spasticity, and it is the characteristic sign of motor impairment in the CP
population.
To describe the differences between the results of the functional tests applied before
and after neurosurgical intervention with Selective Dorsal Rhizotomy (RDS), in ambulatory
patients with spastic CP operated between 2014 and 2022 at the Roosevelt Institute (IR), in
addition to describing the differences in the group of children with similar clinical and
functional characteristics who did not undergo surgery.
This is an observational, retrospective and descriptive study. The available IR
databases were reviewed for the selection of ambulatory children with spastic CP who
underwent RDS surgery and groups of children with similar characteristics within the
aforementioned period. Taking as outcome measures the functional tests such as: GMFM66, 6MWT, PEDI, Ashworth scale and FMS, with GFMCS classification for the operated
children as well as for the matching group.
In the present study it was found that the initial and follow-up levels of GMFCS
remained unchanged from those reported in the literature. In addition, it can be inferred that
the change in GMFM-66 at follow-up was significant compared to one of the groups formed
(group number 1), but it does not occur in the same way with group number 2 given the
multiple existing methodological limitations.
The use of functional tests as an outcome measure is a good strategy to evaluate the
effectiveness of the RSD, although more studies must be carried out and have a larger
patient sample to obtain precise indications for its application, but this is a first step for that in
the future its use be part of an intervention protocol | |
dc.language | spa | |
dc.publisher | Universidad Nacional de Colombia | |
dc.publisher | Bogotá - Medicina - Especialidad en Medicina Física y Rehabilitación | |
dc.publisher | Facultad de Medicina | |
dc.publisher | Bogotá - Colombia | |
dc.publisher | Universidad Nacional de Colombia - Sede Bogotá | |
dc.relation | 1. A Fasano, G Broggi, G. B. R. A. S. (1978) ‘Surgical treatment of spasticity in cerebral palsy’, Childs Brain. doi: 10.1159/000119785. | |
dc.relation | 2. Abbott, R., Forem, S. L. and Johann, M. (1989) ‘Selective posterior rhizotomy for the treatment of spasticity: a review’, Child’s Nervous System, 5(6), pp. 337–346. doi: 10.1007/BF00271889. | |
dc.relation | 3. Alimović, S. (2012) ‘Visual impairments in children with cerebral palsy’, Hrvatska Revija Za Rehabilitacijska Istrazivanja, 48(1), pp. 96–103. doi: 10.32677/ijch.2019.v06.i09.008. | |
dc.relation | 4. Australian Cerebral Palsy Register (2018) ‘Australian Cerebral Palsy Register Report’, (December), p. 18. Available at: https://cpregister.com/wp-content/uploads/2019/02/Report-of-the-Australian-Cerebral-Palsy-Register-Birth-Years-1995-2012.pdf. | |
dc.relation | 5. Avery, L. M. et al. (2003) ‘Rasch analysis of the gross motor function measure: Validating the assumptions of the Rasch model to create an interval-level measure’, Archives of Physical Medicine and Rehabilitation, 84(5), pp. 697–705. doi: 10.1016/s0003-9993(03)04896-7. | |
dc.relation | 6. Bailes, A. F. et al. (2018) ‘Caregiver knowledge and preferences for gross motor function information in cerebral palsy’, Developmental Medicine and Child Neurology, 60(12), pp. 1264–1270. doi: 10.1111/dmcn.13994. | |
dc.relation | 7. Berker, A. N. and Yalçin, M. S. (2008) ‘Cerebral Palsy: Orthopedic Aspects and Rehabilitation’, Pediatric Clinics of North America, 55(5), pp. 1209–1225. doi: 10.1016/j.pcl.2008.07.011. | |
dc.relation | 8. Blumetti, F. C. et al. (2019) ‘Orthopaedic Surgery in Dystonic Cerebral Palsy’, Journal of Pediatric Orthopaedics, 39(4), pp. 209–216. doi: 10.1097/BPO.0000000000000919. | |
dc.relation | 9. Cans, C. (2000) ‘Surveillance of cerebral palsy in Europe: A collaboration of cerebral palsy surveys and registers’, Developmental Medicine and Child Neurology, 42(12), pp. 816–824. doi: 10.1017/S0012162200001511. | |
dc.relation | 10. Cerebral, L. (2013) ‘Prevalence of risk factors for cerebral palsy in two centers in Popayán’, Pediatria, 46(2), pp. 65–70. doi: 10.1016/S0120-4912(15)30088-4. | |
dc.relation | 11. D’Aquino, D. et al. (2018) ‘Selective dorsal rhizotomy for the treatment of severe spastic cerebral palsy: efficacy and therapeutic durability in GMFCS grade IV and V children’, Acta Neurochirurgica, 160(4), pp. 811–821. doi: 10.1007/s00701-017-3349-z. | |
dc.relation | 12. Eliasson, A. C. et al. (2006) ‘The Manual Ability Classification System (MACS) for children with cerebral palsy: Scale development and evidence of validity and reliability’, Developmental Medicine and Child Neurology, 48(7), pp. 549–554. doi: 10.1017/S0012162206001162. | |
dc.relation | 13. Fargel, J. W., Weinmann, H. M. and Bakker, H. H. (1979) ‘Postures, Motility and Respiration of Low‐risk Pre‐term Infants’, Developmental Medicine & Child Neurology, 21(1), pp. 3–27. doi: 10.1111/j.1469-8749.1979.tb01577.x. | |
dc.relation | 14. Fernando Ortiz, Mónica Rincón, J. C. M. (2016) Texto de Medicina Física y Rehabilitación. 1a. ed. Edited by M. Moderno. Bogota D.C. | |
dc.relation | 15. Gabrieli, A. P., Dias, L. and Drumond, O. (1995) ‘Progressäo da luxaçäo do quadril na paralisia cerebral após rizotomia seletiva posterior: relato de 4 casos’, Rev. bras. ortop, 30(1/2), pp. 65–8. | |
dc.relation | 16. Graham, H. K. et al. (2016) ‘Cerebral palsy’, Nature Reviews Disease Primers, 2. doi: 10.1038/nrdp.2015.82. | |
dc.relation | 17. Grunt, S. et al. (2014) ‘Selection criteria for selective dorsal rhizotomy in children with spastic cerebral palsy: A systematic review of the literature’, Developmental Medicine and Child Neurology, 56(4), pp. 302–312. doi: 10.1111/dmcn.12277. | |
dc.relation | 18. Hidecker, M. J. C. et al. (2011) ‘Developing and validating the Communication Function Classification System for individuals with cerebral palsy’, Developmental Medicine and Child Neurology, 53(8), pp. 704–710. doi: 10.1111/j.1469-8749.2011.03996.x. | |
dc.relation | 19. Koman, L. A., Smith, B. P. and Shilt, J. S. (2004) ‘Cerebral palsy’, Lancet, 363(9421), pp. 1619–1631. doi: 10.1016/S0140-6736(04)16207-7. | |
dc.relation | 20. Landau, W. M. and Hunt, C. C. (1990) ‘Dorsal Rhizotomy, A Treatment of Unproven Efficacy’, Journal of Child Neurology, 5(3), pp. 174–178. doi: 10.1177/088307389000500301. | |
dc.relation | 21. Lanska, D. J. (2013) ‘Early controversies over athetosis: Ii. treatment’, Tremor and Other Hyperkinetic Movements, 3, pp. 1–15. doi: 10.5334/TOHM.163. | |
dc.relation | 22. Michael-Asalu, A. et al. (2019) ‘Cerebral Palsy: Diagnosis, Epidemiology, Genetics, and Clinical Update’, Advances in Pediatrics, 66, pp. 189–208. doi: 10.1016/j.yapd.2019.04.002. | |
dc.relation | 23. Morris, C., Galuppi, B. E. and Rosenbaum, P. L. (2004) ‘Reliability of family report for the Gross Motor Function Classification System’, Developmental Medicine and Child Neurology, 46(7), pp. 455–460. doi: 10.1017/S0012162204000751. | |
dc.relation | 24. novak, I. et al. (2013) ‘A systematic review of interventions for children with cerebral palsy: State of the evidence’, Developmental Medicine and Child Neurology, 55(10), pp. 885–910. doi: 10.1111/dmcn.12246. | |
dc.relation | 25. Novak, I. et al. (2017) ‘Early, accurate diagnosis and early intervention in cerebral palsy: Advances in diagnosis and treatment’, JAMA Pediatrics, 171(9), pp. 897–907. doi: 10.1001/jamapediatrics.2017.1689. | |
dc.relation | 26. Patel, D. R. et al. (2010) ‘Developmental disabilities across the lifespan’, Disease-a-Month, 56(6), pp. 305–397. doi: 10.1016/j.disamonth.2010.02.001. | |
dc.relation | 27. Patel, D. R. et al. (2020) ‘Cerebral palsy in children: A clinical overview’, Translational Pediatrics, 9(1), pp. S125–S135. doi: 10.21037/tp.2020.01.01. | |
dc.relation | 28. Patel, D. R. and Soyode, O. (2005) ‘Pharmacologic interventions for reducing spasticity in cerebral palsy’, Indian Journal of Pediatrics, 72(10), pp. 869–872. doi: 10.1007/BF02731118. | |
dc.relation | 29. Privat, J. M. et al. (1976) ‘Sectorial posterior rhizotomy, a new technique of surgical treatment for spasticity’, Acta Neurochirurgica, 35(1–3), pp. 181–195. doi: 10.1007/BF01405946. | |
dc.relation | 30. Rethlefsen, S. A., Ryan, D. D. and Kay, R. M. (2010) ‘Classification systems in cerebral palsy’, Orthopedic Clinics of North America, 41(4), pp. 457–467. doi: 10.1016/j.ocl.2010.06.005. | |
dc.relation | 31. Rosenbaum, P. L. et al. (2003) ‘Prognosis for Gross Motor Function in Cerebral Palsy: Creation of Motor Development Curves’, Obstetrical & Gynecological Survey, 58(3), pp. 166–168. doi: 10.1097/01.ogx.0000055751.17527.56. | |
dc.relation | 32. Rosenbaum, P. L. et al. (2008) ‘Development of the Gross Motor Function Classification System for cerebral palsy’, Developmental Medicine and Child Neurology, 50(4), pp. 249–253. doi: 10.1111/j.1469-8749.2008.02045.x. | |
dc.relation | 33. Russell, D. J. et al. (1989) ‘the Gross Motor Function Measure: a Means To Evaluate the Effects of Physical Therapy’, Developmental Medicine & Child Neurology, 31(3), pp. 341–352. doi: 10.1111/j.1469-8749.1989.tb04003.x. | |
dc.relation | 34. Russell, D. J. et al. (2000) ‘Improved scaling of the gross motor function measure for children with cerebral palsy: Evidence of reliability and validity’, Physical Therapy, 80(9), pp. 873–885. doi: 10.1093/ptj/80.9.873. | |
dc.relation | 35. Sellers, D. et al. (2014) ‘Development and reliability of a system to classify the eating and drinking ability of people with cerebral palsy’, Developmental Medicine and Child Neurology, 56(3), pp. 245–251. doi: 10.1111/dmcn.12352. | |
dc.relation | 36. Shevell, M. (2019) ‘Cerebral palsy to cerebral palsy spectrum disorder’, Neurology, 92(5), pp. 233–235. doi: 10.1212/WNL.0000000000006747. | |
dc.relation | 37. Trabacca, A. et al. (2016) ‘Multidisciplinary rehabilitation for patients with cerebral palsy: Improving long-term care’, Journal of Multidisciplinary Healthcare, 9, pp. 455–462. doi: 10.2147/JMDH.S88782. | |
dc.relation | 38. Wang, H. Y. and Yang, Y. H. (2006) ‘Evaluating the responsiveness of 2 versions of the gross motor function measure for children with cerebral palsy’, Archives of Physical Medicine and Rehabilitation, 87(1), pp. 51–56. doi: 10.1016/j.apmr.2005.08.117. | |
dc.relation | 39. Wang, K. K. et al. (2018) ‘Selective dorsal rhizotomy in ambulant children with cerebral palsy’, Journal of Children’s Orthopaedics, 12(5), pp. 413–427. doi: 10.1302/1863-2548.12.180123. | |
dc.relation | 40. Wei, S. et al. (2006) ‘Reliability and validity of the GMFM-66 in 0- to 3-year-old children with cerebral palsy’, American Journal of Physical Medicine and Rehabilitation, 85(2), pp. 141–147. doi: 10.1097/01.phm.0000197585.68302.25. | |
dc.relation | 41. Wood, E. and Rosenbaum, P. (2000) ‘The gross motor function classification system for cerebral palsy: A study of reliability and stability over time’, Developmental Medicine and Child Neurology, 42(5), pp. 292–296. doi: 10.1017/S0012162200000529. | |
dc.relation | 42. Patrick JH, Roberts AP, Cole GF. Therapeutic choices in the locomotor movement of the child with cerebral palsy – more luck than judgement? Arch Dis Child 2001;85:275–9 | |
dc.relation | 43. Palisano R, Rosenbaum P, Walter S, Russell D, Wood E, Galuppi B. Development and reliability of a system to classify gross motor function in children with cerebral palsy. Dev Med Child Neurol 1997; 39: 214–23 | |
dc.relation | 44. McLaughlin JF, Bjornson KF, Astley SJ, et al. Selective dorsal rhizotomy: efficacy and safety in an investigation masked randomised clinical trial. Dev Med Child Neurol 1998;40:220–32. | |
dc.relation | 45. Wright FV, Sheil EMH, Drake JM, et al. Evaluation of selective dorsal rhizotomy for the reduction of spasticity in cerebral palsy: a randomised controlled trial. Dev Med Child Neurol 1998;40:239–47 | |
dc.relation | 46. Hagglund G, Wagner P. Development of spasticity with age in a total population of children with cerebral palsy. BMC Musculoskelet Disord 2008; 9: 150 | |
dc.relation | 47. Josenby AL, Wagner P, Jarnlo GB, Westbom L, Nordmark E. Motor function after selective dorsal rhizotomy: a 10-year practice-based follow-up study. Dev Med Child Neurol 2012; 54: 429–35 | |
dc.relation | 48. Ailon T, Beauchamp R, Miller S, et al. Long-term out come after selective dorsal rhizotomy in children with spastic cerebral palsy. Childs Nerv Syst 2015; 31: 415– 23. | |
dc.relation | 49. Dudley RW, Parolin M, Gagnon B, et al. Long-term functional benefits of selective dorsal rhizotomy for spastic cerebral palsy. J Neurosurg Pediatr 2013; 12: 142–50 | |
dc.relation | 50. Sanger TD. Pathophysiology of pediatric movement disorders. J Child Neurol 2003; 18(Suppl 1): S9–24. | |
dc.relation | 51. van de Pol LA, Vermeulen RJ, van’t Westende C, et al. Risk factors for dystonia after selective dorsal rhizotomy in nonwalking children and adolescents with bilateral spasticity. Neuropediatrics 2018; 49: 44–50 | |
dc.relation | 52. Bolster EA, van Schie PE, Becher JG, van Ouwerkerk WJ, Strijers RL, Vermeulen RJ. Long-term effect of selective dorsal rhizotomy on gross motor function in ambulant children with spastic bilateral cerebral palsy, compared with reference centiles. Dev Med Child Neurol 2013; 55: 610–6 | |
dc.relation | 53. Warwick j. Peacock, and lori, et al. Functional outcomes following selective posterior rhizotomy in children with cerebral palsy. J neurosurg 74:380-385, 1991 | |
dc.relation | 54. Mariusz Pawłowski, Jakub S. Gąsior, Marcin Bonikowski. Long-term benefits from selective dorsal rhizotomy in a young patient with cerebral palsy. Volume 24, Issue 2, August 2017, Pages 256-260 | |
dc.relation | 55. Petra E M van Schie, R Jeroen Vermeulen, Willem J R van Ouwerkerk, et al. Selective dorsal rhizotomy in cerebral palsy to improve functional abilities: evaluation of criteria for Selection. Childs Nerv Syst. 2005 Jun;21(6):451-7. | |
dc.relation | 56. Health Quality Ontario. Lumbosacral Dorsal Rhizotomy for Spastic Cerebral Palsy: A Health Technology Assessment. Ont Health Technol Assess Ser. 2017; 17(10): 1–186. | |
dc.rights | Reconocimiento 4.0 Internacional | |
dc.rights | http://creativecommons.org/licenses/by/4.0/ | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.title | Desenlaces funcionales en niños con paralisis cerebral deambulantes intervenidos con rizotomia dorsal selectiva | |
dc.type | Trabajo de grado - Especialidad Médica | |