dc.contributorFonseca Romero, Karen Milena
dc.contributorGrupo de Óptica E Información Cuántica
dc.creatorGalvis Florez, Cristian Andrey
dc.date.accessioned2022-11-09T14:33:05Z
dc.date.available2022-11-09T14:33:05Z
dc.date.created2022-11-09T14:33:05Z
dc.date.issued2022
dc.identifierhttps://repositorio.unal.edu.co/handle/unal/82668
dc.identifierUniversidad Nacional de Colombia
dc.identifierRepositorio Institucional Universidad Nacional de Colombia
dc.identifierhttps://repositorio.unal.edu.co/
dc.description.abstractLa estimación de estados cuánticos es una tarea importante que se emplea en múltiples protocolos de información cuántica. En este trabajo se considera una familia de operadores unitarios de evolución dependientes de un parámetro (dos parámetros) que permiten la estimación de una componente del espín (todas las componentes del espín) de un sistema de dos niveles. La función de transferencia de tomografía cuántica (qTTF), que corresponde a la traza de la inversa de la matriz de información de Fisher, se usa para cuantificar el rendimiento del estimador. En este trabajo, se optimiza la qTTF para los dos estimadores. El mínimo de la qTTF del modelo de un parámetro se alcanza cuando el poder de entrelazamiento del operador unitario asociado es máximo. Los dos modelos son simulados en una unidad cuántica de procesamiento de IBM. Mientras que la implementación del modelo para estimación de una componente funciona satisfactoriamente, el modelo para la estimación total del espín muestra grandes errores debido a la profundidad del circuito asociado. (Texto tomado de la fuente)
dc.description.abstractQuantum state estimation is an important task of many quantum information protocols. We consider a one-parameter (resp. two-parameter) family of unitary evolution operators which allow the estimation of a single spin component (resp. all spin components) of a two-level system. The quantum tomographic transfer function (qTTF), the average of the trace of the inverse of the Fisher information matrix, is used a quantifier of tomographic performance. In this work, we optimize the qTTF of both estimation models. The minimum of the qTTF of the one-parameter model is attained when the entangling power of the associated unitary operator is maximum. Both models were run on an IBM quantum processing unit. While the implementation of the estimation of a single-spin component is quite satisfactory, the implementation of the whole spin estimation displays rather large errors due to the relatively large depth of the associated circuit.
dc.languagespa
dc.publisherUniversidad Nacional de Colombia
dc.publisherBogotá - Ciencias - Maestría en Ciencias - Física
dc.publisherFacultad de Ciencias
dc.publisherBogotá, Colombia
dc.publisherUniversidad Nacional de Colombia - Sede Bogotá
dc.relationRedCol
dc.relationLaReferencia
dc.relationArrazola, J. M. et al. (2021). «Quantum circuits with many photons on a programmable nanophotonic chip». Nature 591.7848, págs. 54-60. ISSN: 1476-4687. DOI: 10.1038/ s41586-021-03202-1. URL: https://doi.org/10.1038/s41586-021-03202-1.
dc.relationArute, Frank et al. (2019). «Quantum supremacy using a programmable superconducting processor». Nature 574.7779, págs. 505-510. ISSN: 1476-4687. DOI: 10 . 1038 / s41586-019-1666-5. URL: https://doi.org/10.1038/s41586-019-1666-5.
dc.relationAsfaw, Abraham et al. (2020). Learn Quantum Computation Using Qiskit. URL: http:// community.qiskit.org/textbook.
dc.relationBanaszek, K,MCramer y D Gross (2013). «Focus on quantum tomography». New Journal of Physics 15.12, pág. 125020. DOI: 10.1088/1367-2630/15/12/125020. URL: https: //doi.org/10.1088/1367-2630/15/12/125020.
dc.relationBarenco, Adriano et al. (1995). «Elementary gates for quantum computation». Phys. Rev. A 52 (5), págs. 3457-3467. DOI: 10.1103/PhysRevA.52.3457. URL: https://link. aps.org/doi/10.1103/PhysRevA.52.3457.
dc.relationBendersky, Ariel, Fernando Pastawski y Juan Pablo Paz (2009). «Selective and efficient quantum process tomography». Phys. Rev. A 80 (3), pág. 032116. DOI: 10 . 1103 / PhysRevA . 80 . 032116. URL: https : / / link . aps . org / doi / 10 . 1103 / PhysRevA . 80.032116.
dc.relationBenenti, Giuliano, Giulio Casati y Giuliano Strini (2004). Principles of Quantum Computation and Information. Vol. 2. WORLD SCIENTIFIC. DOI: 10 . 1142 / 5528. eprint: https : / / www . worldscientific . com / doi / pdf / 10 . 1142 / 5528. URL: https : / / www.worldscientific.com/doi/abs/10.1142/5528.
dc.relationBenioff, Paul (1980). «The computer as a physical system: A microscopic quantum mechanical Hamiltonian model of computers as represented by Turing machines». Journal of Statistical Physics 22 (5). DOI: https://doi.org/10.1007/BF01011339.
dc.relationBouwmeester, Dirk, Artur Ekert y Anton Zeilinger (2001). the Physics of Quantum Information, Quantum Cryptography, Quantum Teleportation and Quantum Computation. Springer-Verlag.
dc.relationChuang, Isaac L., Neil Gershenfeld y Mark Kubinec (1998). «Experimental Implementation of Fast Quantum Searching». Phys. Rev. Lett. 80 (15), págs. 3408-3411. DOI: 10.1103/PhysRevLett.80.3408. URL: https://link.aps.org/doi/10.1103/ PhysRevLett.80.3408.
dc.relationDiósi, Lajos (2007). A Short Course in Quantum Information Theory. Springer
dc.relationEintein, Albert, Borís Podolsky y Nathan Rosen (1935). «Can Quantum-Mechanical Description of Physical Reality Be Considered Complete?» Physycal Review 47, págs. 777-780.
dc.relationFerrie, Christopher (2014). «Self-Guided Quantum Tomography». Phys. Rev. Lett. 113 (19), pág. 190404. DOI: 10.1103/PhysRevLett.113.190404. URL: https://link.aps. org/doi/10.1103/PhysRevLett.113.190404.
dc.relationFeynman, Richard P. (1982). «Simulating physics with computers». International Journal of Theoretical Physics 21 (6). DOI: https://doi.org/10.1007/BF02650179.
dc.relationFeynman, Richard P. (1986). «Quantum mechanical computers». Foundations of Physics 16 (6). DOI: https://doi.org/10.1007/BF01886518.
dc.relationGaikwad, Akshay et al. (2022). «Implementing efficient selective quantum process tomography of superconducting quantum gates on IBM quantum experience». Scientific Reports 12.1, pág. 3688. ISSN: 2045-2322. DOI: 10.1038/s41598-022-07721-3. URL: https://doi.org/10.1038/s41598-022-07721-3.
dc.relationGalvis Florez, Cristian Andrey (2022). QBronze installation session. https://github.com/ cagalvisf/QBronze_installation.
dc.relationGrover, Lov K. (1996). «A Fast Quantum Mechanical Algorithm for Database Search». Proceedings of the Twenty-Eighth AnnualACMSymposium on Theory of Computing. STOC ’96. Philadelphia, Pennsylvania, USA: Association for Computing Machinery, 212–219. ISBN: 0897917855. DOI: 10.1145/237814.237866. URL: https://doi.org/10.1145/ 237814.237866.
dc.relationGupta, Rishabh, Raphael D. Levine y Sabre Kais (2021). «Convergence of a Reconstructed Density Matrix to a Pure State Using the Maximal Entropy Approach». The Journal of Physical Chemistry A 125.34. PMID: 34410718, págs. 7588-7595. DOI: 10.1021/ acs.jpca.1c05884. eprint: https://doi.org/10.1021/acs.jpca.1c05884. URL: https://doi.org/10.1021/acs.jpca.1c05884.
dc.relationGupta, Rishabh et al. (2021). «Maximal Entropy Approach for Quantum State Tomography ». PRX Quantum 2 (1), pág. 010318. DOI: 10.1103/PRXQuantum.2.010318. URL: https://link.aps.org/doi/10.1103/PRXQuantum.2.010318.
dc.relationIBM (s.f.). IBM Quantum Experience. Accessed: 2022. URL: https://quantum-computing. ibm.com/.
dc.relationJames, Daniel F. V. et al. (2001). «Measurement of qubits». Phys. Rev. A 64 (5), pág. 052312. DOI: 10.1103/PhysRevA.64.052312. URL: https://link.aps.org/doi/10.1103/ PhysRevA.64.052312.
dc.relationJattana, Manpreet Singh et al. (2020). «General error mitigation for quantum circuits». Quantum Information Processing 19.11, pág. 414. ISSN: 1573-1332. DOI: 10.1007/s11128- 020-02913-0. URL: https://doi.org/10.1007/s11128-020-02913-0.
dc.relationJohnson, M. W. et al. (2011). «Quantum annealing with manufactured spins». Nature 473.7346, págs. 194-198. ISSN: 1476-4687. DOI: 10.1038/nature10012. URL: https: //doi.org/10.1038/nature10012.
dc.relationJohnstun, Scott y Jean-François Van Huele (2021). «Understanding and compensating for noise on IBM quantum computers». American Journal of Physics 89.10, págs. 935-942. DOI: 10.1119/10.0006204. eprint: https://doi.org/10.1119/10.0006204. URL: https://doi.org/10.1119/10.0006204.
dc.relationJones, Nicola (2013). «Google and NASA snap up quantum computer». Nature. ISSN: 1476-4687. DOI: 10.1038/nature.2013.12999. URL: https://doi.org/10.1038/ nature.2013.12999.
dc.relationKandala, Abhinav et al. (2017). «Hardware-efficient variational quantum eigensolver for small molecules and quantum magnets». Nature 549.7671, págs. 242-246. ISSN: 1476- 4687. DOI: 10.1038/nature23879. URL: https://doi.org/10.1038/nature23879
dc.relationKay, Steven M. (1993). Fundamentals of Statistical Signal Processing: Estimation Theory. Prentice Hall PTR.
dc.relationKiktenko, Evgeniy O., Daria N. Kublikova y Aleksey K. Fedorov (2020). «Estimating the precision for quantum process tomography». Optical Engineering 59.6, págs. 1 -9. DOI: 10.1117/1.OE.59.6.061614. URL: https://doi.org/10.1117/1.OE.59.6.061614.
dc.relationKilloran, Nathan et al. (mar. de 2019). «Strawberry Fields: A Software Platform for Photonic Quantum Computing». Quantum 3, pág. 129. ISSN: 2521-327X. DOI: 10.22331/ q-2019-03-11-129. URL: https://doi.org/10.22331/q-2019-03-11-129.
dc.relationLehmann, E.L. y George Cassella (1998). Theory of Point Estimation. 2.a ed. Springer Verlag.
dc.relationLohani, Sanjaya et al. (2021). «On the Experimental Feasibility of Quantum State Reconstruction via Machine Learning». IEEE Transactions on Quantum Engineering 2, págs. 1-10. DOI: 10.1109/TQE.2021.3106958.
dc.relationMatteo Paris, Jaroslav Rehacek (2004). Quantum State Estimation. Springer, Berlin, Heidelberg. DOI: https://doi.org/10.1007/b98673. eprint: https://link.springer. com/book/10.1007/b98673. URL: https://link.springer.com/book/10.1007/ b98673.
dc.relationNielsen, Michael A. e Isaac L. Chuang (2011). Quantum Computation and Quantum Information: 10th Anniversary Edition. 10th. USA: Cambridge University Press. ISBN: 1107002176.
dc.relationPerarnau-Llobet, Martí y Theodorus Maria Nieuwenhuizen (2017). «Simultaneous measurement of two noncommuting quantum variables: Solution of a dynamical model ». Phys. Rev. A 95 (5), pág. 052129. DOI: 10 . 1103 / PhysRevA . 95 . 052129. URL: https://link.aps.org/doi/10.1103/PhysRevA.95.052129.
dc.relationPeres, Asher (1986). «When is a quantum measurement?» American Journal of Physics 54.8, págs. 688-692. DOI: 10.1119/1.14505. eprint: https://doi.org/10.1119/1. 14505. URL: https://doi.org/10.1119/1.14505
dc.relationRezakhani, A. T. (2004). «Characterization of two-qubit perfect entanglers». Phys. Rev. A 70 (5), pág. 052313. DOI: 10.1103/PhysRevA.70.052313. URL: https://link.aps. org/doi/10.1103/PhysRevA.70.052313
dc.relationSaavedra, Daniel y K. M. Fonseca-Romero (2019). «Complete and incomplete state estimation via the simultaneous unsharp measurement of two incompatible qubit operators ». Phys. Rev. A 99 (4), pág. 042130. DOI: 10.1103/PhysRevA.99.042130. URL: https://link.aps.org/doi/10.1103/PhysRevA.99.042130.
dc.relationSakurai, J. John y Jim J. Napolitano (2014). Modern Quantum Mechanics. Pearson Education Limited.
dc.relationShor, P.W. (1994). «Algorithms for quantum computation: discrete logarithms and factoring ». Proceedings 35th Annual Symposium on Foundations of Computer Science, págs. 124-134. DOI: 10.1109/SFCS.1994.365700.
dc.relationTeo, Yong Siah (2015). Introduction to Quantum-State Estimation. WORLD SCIENTIFIC. DOI: 10.1142/9617. eprint: https://www.worldscientific.com/doi/pdf/10.1142/ 9617. URL: https://www.worldscientific.com/doi/abs/10.1142/9617.
dc.relationTilma, Todd y E C G Sudarshan (2002). «Generalized Euler angle parametrization for SU(N)». Journal of Physics A: Mathematical and General 35.48, págs. 10467-10501. DOI: 10.1088/0305-4470/35/48/316.
dc.relationTuring, A. M. (1938). «On Computable Numbers, with an Application to the Entscheidungsproblem. A Correction». Proceedings of the London Mathematical Society s2-43.1, págs. 544-546. DOI: https://doi.org/10.1112/plms/s2-43.6.544.
dc.relationUnruh, W. G. (1995). «Maintaining coherence in quantum computers». Phys. Rev. A 51 (2), págs. 992-997. DOI: 10.1103/PhysRevA.51.992. URL: https://link.aps.org/ doi/10.1103/PhysRevA.51.992.
dc.relationVirtanen, Pauli et al. (2020). «SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python». Nature Methods 17, págs. 261-272. DOI: 10.1038/s41592-019-0686- 2.
dc.relationWatrous, John (2018). The Theory of Quantum Information. Cambridge University Press.
dc.relationWilde, Mark M (2013). Quantum Information Theory. Cambridge University Press
dc.relationWootters, William K. (1998). «Entanglement of Formation of an Arbitrary State of Two Qubits». Phys. Rev. Lett. 80 (10), págs. 2245-2248. DOI: 10.1103/PhysRevLett.80. 2245. URL: https://link.aps.org/doi/10.1103/PhysRevLett.80.2245
dc.relationZanardi, Paolo, Christof Zalka y Lara Faoro (2000). «Entangling power of quantum evolutions ». Phys. Rev. A 62 (3), pág. 030301. DOI: 10.1103/PhysRevA.62.030301. URL: https://link.aps.org/doi/10.1103/PhysRevA.62.030301.
dc.relationŘeháček, Jaroslav, Yong Siah Teo y Zdeněk Hradil (2015). «Determining which quantum measurement performs better for state estimation». Phys. Rev. A 92 (1), pág. 012108. DOI: 10.1103/PhysRevA.92.012108. URL: https://link.aps.org/doi/10.1103/ PhysRevA.92.012108.
dc.relationŘeháček, Jaroslav et al. (2007). «Diluted maximum-likelihood algorithm for quantum tomography». Phys. Rev. A 75 (4), pág. 042108. DOI: 10.1103/PhysRevA.75.042108. URL: https://link.aps.org/doi/10.1103/PhysRevA.75.042108.
dc.rightsAtribución-NoComercial 4.0 Internacional
dc.rightshttp://creativecommons.org/licenses/by-nc/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.titleAlgoritmo cuántico para la reconstrucción de estados de espín un medio
dc.typeTrabajo de grado - Maestría


Este ítem pertenece a la siguiente institución