dc.contributorDiaz Moreno, Amanda Consuelo
dc.contributorBioalimentos
dc.contributorBernal Castro Camila Andrea
dc.contributorGutiérrez Cortes Carolina
dc.contributorhttps://orcid.org/0000-0003-4063-887X
dc.contributorCamargo Herrera, Angel David
dc.contributorCamargo Herrera, Angel David
dc.contributorCamargo, Angel
dc.contributorCamargo Herrera, Angel David
dc.creatorCamargo Herrera, Angel David
dc.date.accessioned2023-02-21T17:01:54Z
dc.date.available2023-02-21T17:01:54Z
dc.date.created2023-02-21T17:01:54Z
dc.date.issued2022
dc.identifierhttps://repositorio.unal.edu.co/handle/unal/83538
dc.identifierUniversidad Nacional de Colombia
dc.identifierRepositorio Institucional Universidad Nacional de Colombia
dc.identifierhttps://repositorio.unal.edu.co/
dc.description.abstractDentro de las estrategias para el desarrollo de bebidas lácteas fermentadas con cualidades funcionales, se considera la inclusión de medios de cultivo vegetales fuente de antioxidantes y fibra inoculado con microorganismos probióticos comerciales. Esta condición, tiene una sinergia positiva en la viabilidad del probiótico a lo largo de su vida útil, incluso logrando una interacción entre fibras prebióticas y biomoléculas con actividad antioxidante y antimicrobiana propias de zanahoria y mango como matriz vegetal, productos con alto contenido natural de carotenoides provitamina A, compuestos fenólicos, micronutrientes y fibras solubles e insolubles. Acorde al consenso establecido por la Asociación Científica Internacional para el estudio de Probióticos y Prebióticos (ISAPP por sus siglas en inglés), un bioyogur se define como “una bebida láctea con potencial funcional debido a la inclusión de probióticos y/o diferentes compuestos fisiológicamente activos con propiedades beneficiosas para la salud del huésped”. El desarrollo de un producto de esta categoría, implica una selección de condiciones de proceso, que implican las siguientes etapas: • Selección del cultivo iniciador teniendo en cuenta la tasa de pos-acidificación y que presente una viscosidad media. • Evaluar las cinéticas de crecimiento y acidificación de cuatro cepas comerciales con potencial probiótico (Bifidobacterium lactis, Lactobacillus rhamnosus, Lactobacillus acidophilus y VEGE 092 un conglomerado de Pediococcus pentosaceus, Lactobacillus acidophilus y Lactobacilus paracasei) de la línea HOWARU de DANISCO-DUPONT ® utilizando leche descremada y caldo Man Rogosa Sharpe (MRS) para definir los parámetros cinéticos y seleccionar la cepa de trabajo. • Analizar los parámetros fisicoquímicos de la matriz vegetal (zanahoria y mango): pH, acidez titulable, sólidos solubles totales y un estimado de compuestos bioactivos: contenido de carotenoides totales, fenoles totales y fibra dietaria. • Evaluar el potencial prebiótico de tres fibras comerciales de la línea ORAFTI® (ORAFTI GR, ORAFTI GEL, ORAFTI P95) y una fuente de carbono alternativa (mielato de roble de Apis mellifera) utilizando la metodología de índice y actividad prebiótico. Definidas las condiciones anteriores, se evalúa el efecto de la inclusión de matriz vegetal (zanahoria y mango) en diferentes porcentajes (15, 20 y 25% p/v) y se determina la viabilidad de los microrganismos probióticos comerciales inoculados en la bebida láctea durante la fermentación, finalmente en este caso se seleccionó el porcentaje de inclusión de la matriz vegetal (20% de pulpa de zanahoria y del 3% de pulpa de mango como regulador de sabor). El seguimiento en cada etapa permite analizar el comportamiento del producto durante el proceso de fermentación y posteriormente durante almacenamiento refrigerado (4°C±1°C por 21 días), en esta etapa se determinó la viabilidad mediante recuento en placa por profundidad en agar MRS del cultivo probiótico y del cultivo iniciador, inoculados en la bebida láctea, también se evaluaron parámetros fisicoquímicos como pH, acidez titulable, sólidos solubles totales, textura, capacidad de retención de agua, color y el contenido de antioxidantes, fenoles totales, carotenoides totales y la actividad antimicrobiana. Para el día 21 del almacenamiento se obtuvo una densidad celular para el probiótico de 10,26 Log UFC/mL y para el cultivo iniciador de 8,66 Log UFC/mL al final del almacenamiento. Se encontraron cambios significativos (p<0,05) en la textura (34,16), capacidad de retención de agua (71%) y carotenoides totales (3,9692 µg caroteno/g muestra). (Texto tomado de la fuente)
dc.description.abstractWithin the strategies for developing fermented milk beverages with functional qualities, the inclusion of vegetable culture media sources of antioxidants and fiber inoculated with commercial probiotic microorganisms is considered. This condition has a positive synergy in the viability of the probiotic throughout its useful life, even achieving an interaction between prebiotic fibers and biomolecules with antioxidant and antimicrobial activity typical of carrot and mango as a vegetable matrix, products with a high natural content of carotenoids. Provitamin A, phenolic compounds, micronutrients, and soluble and insoluble fibers. According to the consensus established by the International Scientific Association for the Study of Probiotics and Prebiotics (ISAPP), a bioyogurt is defined as "a milk drink with functional potential due to the inclusion of probiotics and different physiologically active compounds with beneficial properties for the health of the host.” The development of a product in this category implies a selection of process conditions, which involve the following stages: • Selection of the starter culture, taking into account the rate of post-acidification and having a medium viscosity. • Evaluate the growth and acidification kinetics of four commercial strains with probiotic potential (Bifidobacterium lactis, Lactobacillus rhamnosus, Lactobacillus acidophilus, and VEGE 092, a conglomerate of Pediococcus pentosaceus, Lactobacillus acidophilus and Lactobacillus paracasei) of the DANISCO-DUPONT ® HOWARU line using milk. skimmed milk and Man Rogosa Sharpe (MRS) broth to define the kinetic parameters and select the working strain. • Analyze the physicochemical parameters of the vegetable matrix (carrot and mango): pH, titratable acidity, total soluble solids, and an estimate of bioactive compounds: the content of total carotenoids, total phenols, and dietary fiber. • Evaluate the prebiotic potential of three commercial fibers from the ORAFTI® line (ORAFTI GR, ORAFTI GEL, ORAFTI P95) and an alternative carbon source (Apis mellifera oak honeydew) using the prebiotic index and activity methodology. Once the previous conditions are defined, the effect of the inclusion of vegetable matrix (carrot and mango) in different percentages (15, 20, and 25% w/v) is evaluated, and the viability of the commercial probiotic microorganisms inoculated in the milk drink during fermentation, finally, in this case, the inclusion percentage of the vegetable matrix was selected (20% carrot pulp and 3% mango pulp as flavor regulator). Monitoring at each stage allows for analyzing the behavior of the product during the fermentation process and later during refrigerated storage (4°C±1°C for 21 days). At this stage, viability was determined by plate count by depth in MRS agar. of the probiotic culture and the starter culture, inoculated in the milk drink, physicochemical parameters were also evaluated, such as pH, titratable acidity, total soluble solids, texture, water retention capacity, color, and the content of antioxidants, total phenols, total carotenoids, and antimicrobial activity. For day 21 of storage, a cell density of 10.26 Log CFU/mL was obtained for the probiotic and for the starter culture of 8.66 Log CFU/mL at the end of storage. Significant changes (p<0.05) were found in texture (34.16), water retention capacity (71%), and total carotenoids (3.9692 µg carotene/g sample).
dc.publisherUniversidad Nacional de Colombia
dc.publisherBogotá - Ciencias Agrarias - Maestría en Ciencia y Tecnología de Alimentos
dc.publisherFacultad de Ciencias Agrarias
dc.publisherBogotá, Colombia
dc.publisherUniversidad Nacional de Colombia - Sede Bogotá
dc.relationAbid, Y., Casillo, A., Gharsallah, H., Joulak, I., Lanzetta, R., Corsaro, M. M., Attia, H., & Azabou, S. (2018). Production and structural characterization of exopolysaccharides from newly isolated probiotic lactic acid bacteria. International Journal of Biological Macromolecules, 108, 719–728. https://doi.org/10.1016/j.ijbiomac.2017.10.155
dc.relationAhmad, T., Cawood, M., Iqbal, Q., Ariño, A., Batool, A., Sabir Tariq, R. M., Azam, M., & Akhtar, S. (2019). Phytochemicals in Daucus carota and their health benefits—review article. Foods, 8(9), 1–22. https://doi.org/10.3390/FOODS8090424
dc.relationAllgeyer, L. C., Miller, M. J., & Lee, S. Y. (2010). Sensory and microbiological quality of yogurt drinks with prebiotics and probiotics. Journal of Dairy Science, 93(10), 4471–4479. https://doi.org/10.3168/jds.2009-2582
dc.relationArora, S., Siddiqui, S., & Gehlot, R. (2019). Physicochemical and Bioactive Compounds in Carrot and Beetroot Juice. Asian Journal of Dairy and Food Research, 38(03). https://doi.org/10.18805/ajdfr.dr-1363
dc.relationAshraf, R., & Shah, N. P. (2011). Selective and differential enumerations of Lactobacillus delbrueckii subsp. bulgaricus, Streptococcus thermophilus, Lactobacillus acidophilus, Lactobacillus casei and Bifidobacterium spp. in yoghurt - A review. International Journal of Food Microbiology, 149(3), 194–208. https://doi.org/10.1016/j.ijfoodmicro.2011.07.008
dc.relationAuthority, E. F. S. (2010). Guidance on the risk assessment of genetically modified microorganisms and their food and feed products. EFSA Journal, January, 1–67. https://doi.org/10.2903/j.efsa.20YY.NNNN.Available
dc.relationBender, I., Edesi, L., Hiiesalu, I., Ingver, A., Kaart, T., Kaldmäe, H., Talve, T., Tamm, I., & Luik, A. (2020). Organic carrot (Daucus carota L.) production has an advantage over conventional in quantity as well as in quality. Agronomy, 10(9). https://doi.org/10.3390/agronomy10091420
dc.relationBernal-Castro, C. (2017). Evaluación del comportamiento de cultivos probióticos y prebióticos en bebidas de frutos rojos. Tesis de Maestría. Instituto de Ciencia y Tecnología de Alimentos. Facultad de Ciencias Agrarias. Universidad Nacional de Colombia.
dc.relationBourdichon, F., Casaregola, S., Farrokh, C., Frisvad, J. C., Gerds, M. L., Hammes, W. P., Harnett, J., Huys, G., Laulund, S., Ouwehand, A., Powell, I. B., Prajapati, J. B., Seto, Y., Ter Schure, E., Van Boven, A., Vankerckhoven, V., Zgoda, A., Tuijtelaars, S., & Hansen, E. B. (2012). Food fermentations: Microorganisms with technological beneficial use. International Journal of Food Microbiology, 154(3), 87–97. https://doi.org/10.1016/j.ijfoodmicro.2011.12.030
dc.relationCaldeira, L. A., Alves, É. E., Ribeiro, A. de M. F., Rocha Júnior, V. R., Antunes, A. B., dos Reis, A. F., Gomes, J. da C., de Carvalho, M. H. R., & Martinez, R. I. E. (2018). Viability of probiotic bacteria in bioyogurt with the addition of honey from Jataí and Africanized bees. Pesquisa Agropecuaria Brasileira, 53(2), 206–211. https://doi.org/10.1590/S0100-204X2018000200009
dc.relationChanalia, P., Gandhi, D., Attri, P., & Dhanda, S. (2018). Purification and characterization of β-galactosidase from probiotic Pediococcus acidilactici and its use in milk lactose hydrolysis and galactooligosaccharide synthesis. Bioorganic Chemistry, 77, 176–189. https://doi.org/10.1016/j.bioorg.2018.01.006
dc.relationChung, H. J., Lee, H., Na, G., Jung, H., Kim, D. G., Shin, S. I., Jung, S. E., Choi, I. D., Lee, J. H., Sim, J. H., & Choi, H. K. (2020). Metabolic and lipidomic profiling of vegetable juices fermented with various probiotics. Biomolecules, 10(5), 1–17. https://doi.org/10.3390/biom10050725
dc.relationCorbo, M. R., Bevilacqua, A., Petruzzi, L., Casanova, F. P., & Sinigaglia, M. (2014). Functional Beverages: The Emerging Side of Functional Foods: Commercial Trends, Research, and Health Implications. Comprehensive Reviews in Food Science and Food Safety, 13(6), 1192–1206. https://doi.org/10.1111/1541-4337.12109
dc.relationDaneshi, M., Ehsani, M. R., Razavi, S. H., & Labbafi, M. (2013). Effect of refrigerated storage on the probiotic survival and sensory properties of milk/carrot juice mix drink. Electronic Journal of Biotechnology, 16(5). https://doi.org/10.2225/vol16-issue5-fulltext-2
dc.relationDevaki, C. S., & Premavalli, K. S. (2019). Fermented Vegetable Beverages. In Fermented Beverages. Elsevier Inc. https://doi.org/10.1016/b978-0-12-815271-3.00008-7
dc.relationDubey, N., Mishra, V., & Thakur, D. (2018). Plant-Based Antimicrobial Formulations. In Postharvest Disinfection of Fruits and Vegetables. Elsevier Inc. https://doi.org/10.1016/b978-0-12-812698-1.00011-x
dc.relationEscamilla-Hurtado, M. L., Valdés-Martínez, S. E., Soriano-Santos, J., Gómez-Pliego, R., Verde-Calvo, J. R., Reyes-Dorantes, A., & Tomasini-Campocosio, A. (2005). Effect of culture conditions on production of butter flavor compounds by Pediococcus pentosaceus and Lactobacillus acidophilus in semisolid maize-based cultures. International Journal of Food Microbiology, 105(3), 305–316. https://doi.org/10.1016/j.ijfoodmicro.2005.04.014
dc.relationEsmaeilnejad Moghadam, B., Keivaninahr, F., Nazemi, A., Fouladi, M., Rezaei Mokarram, R., & Zoroufchi Benis, K. (2019). Optimization of conjugated linoleic acid production by Bifidobacterium animalis subsp. Lactis and its application in fermented milk. Lwt, 108(March), 344–352. https://doi.org/10.1016/j.lwt.2019.03.071
dc.relationFazilah, N. F., Ariff, A. B., Khayat, M. E., Rios-Solis, L., & Halim, M. (2018a). Influence of probiotics, prebiotics, synbiotics and bioactive phytochemicals on the formulation of functional yogurt. Journal of Functional Foods, 48(July), 387–399. https://doi.org/10.1016/j.jff.2018.07.039
dc.relationFazilah, N. F., Ariff, A. B., Khayat, M. E., Rios-Solis, L., & Halim, M. (2018b). Influence of probiotics, prebiotics, synbiotics and bioactive phytochemicals on the formulation of functional yogurt. Journal of Functional Foods, 48(April), 387–399. https://doi.org/10.1016/j.jff.2018.07.039
dc.relationFlorence, A. C. R., Oliveira, R. P. S., Silva, R. C., Soares, F. A. S. M., Gioielli, L. A., & Oliveira, M. N. (2012). Organic milk improves Bifidobacterium lactis counts and bioactive fatty acids contents in fermented milk. LWT - Food Science and Technology, 49(1), 89–95. https://doi.org/10.1016/j.lwt.2012.04.023
dc.relationGänzle, M. G. (2019). Lactose a conditional prebiotic? Lactose, Evolutionary Role, Health Effects, and Applications, 155–173. https://doi.org/10.1016/b978-0-12-811720-0.00004-0
dc.relationGasaly, N., Riveros, K., & Gotteland, M. (2020). Fitoquímicos: una nueva clase de prebióticos. Revista Chilena de Nutrición, 47(2), 317–327. https://doi.org/10.4067/s0717-75182020000200317
dc.relationGibson, M., & Newsham, P. (2018). Milk and Dairy. In Food Science and the Culinary Arts. https://doi.org/10.1016/b978-0-12-811816-0.00011-7
dc.relationGies, M., Descalzo, A. M., Servent, A., & Dhuique-Mayer, C. (2019). Incorporation and stability of carotenoids in a functional fermented maize yogurt-like product containing phytosterols. Lwt, 111(February), 105–110. https://doi.org/10.1016/j.lwt.2019.04.103
dc.relationGil-Rodríguez, A. M., & Beresford, T. P. (2019). Lipase inhibitory activity of skim milk fermented with different strains of lactic acid bacteria. Journal of Functional Foods, 60(May), 103413. https://doi.org/10.1016/j.jff.2019.06.015
dc.relationGovender, M., Choonara, Y. E., Kumar, P., Du Toit, L. C., Van Vuuren, S., & Pillay, V. (2014). A review of the advancements in probiotic delivery: Conventional vs. Non-conventional formulations for intestinal flora supplementation. AAPS PharmSciTech, 15(1), 29–43. https://doi.org/10.1208/s12249-013-0027-1
dc.relationGuneser, O., Isleten Hosoglu, M., Aydeniz Guneser, B., & Karagul Yuceer, Y. (2019). Engineering of Milk-Based Beverages: Status, Developments, and Consumer Trends. In Milk-Based Beverages (Vol. 2015). Elsevier Inc. https://doi.org/10.1016/b978-0-12-815504-2.00001-3
dc.relationGupta, M., & Bajaj, B. K. (2017). Development of fermented oat flour beverage as a potential probiotic vehicle. Food Bioscience, 20(September), 104–109. https://doi.org/10.1016/j.fbio.2017.08.007
dc.relationHagi, T., Kobayashi, M., & Nomura, M. (2014). Aerobic condition increases carotenoid production associated with oxidative stress tolerance in Enterococcus gilvus. FEMS Microbiology Letters, 350(2), 223–230. https://doi.org/10.1111/1574-6968.12341
dc.relationHallmann, E., & Rembialkowska, E. (2009). Roczniki Pa ń stwowego Zakładu Higieny Roczn . PZH 2009 , tom 60 , Nr 3. May 2014
dc.relationHettinga, K. A. (2019). Lactose in the dairy production chain. In Lactose. Elsevier Inc. https://doi.org/10.1016/b978-0-12-811720-0.00006-4
dc.relationHickson, M. (2014). Probiotics and the gastrointestinal microbiota. Advanced Nutrition and Dietetics in Gastroenterology, 81–86. https://doi.org/10.1002/9781118872796.ch2.3
dc.relationHill, D., Ross, R. P., Arendt, E., & Stanton, C. (2017). Microbiology of yogurt and bio-yogurts containing probiotics and prebiotics. In Yogurt in Health and Disease Prevention. Elsevier Inc. https://doi.org/10.1016/B978-0-12-805134-4.00004-3
dc.relationHuppertz, T. (2016). Heat stability of milk. Advanced Dairy Chemistry: Volume 1B: Proteins: Applied Aspects: Fourth Edition, 57(2), 179–196. https://doi.org/10.1007/978-1-4939-2800-2_7
dc.relationJanuário, J. G. B., da Silva, I. C. F., de Oliveira, A. S., de Oliveira, J. F., Dionísio, J. N., Klososki, S. J., & Pimentel, T. C. (2017). Probiotic yoghurt flavored with organic beet with carrot, cassava, sweet potato or corn juice. International Food Research Journal, 24(1), 359–366. http://www.ifrj.upm.edu.my
dc.relationJia, R., Chen, H., Chen, H., & Ding, W. (2016). Effects of fermentation with Lactobacillus rhamnosus GG on product quality and fatty acids of goat milk yogurt. Journal of Dairy Science, 99(1), 221–227. https://doi.org/10.3168/jds.2015-10114
dc.relationKandylis, P., Pissaridi, K., Bekatorou, A., Kanellaki, M., & Koutinas, A. A. (2016). Dairy and non-dairy probiotic beverages. Current Opinion in Food Science, 7, 58–63. https://doi.org/10.1016/j.cofs.2015.11.012
dc.relationKaraman, S., & Ozcan, T. (2021). Determination of gelation properties and bio-therapeutic potential of black carrot fibre-enriched functional yoghurt produced using pectin and gum arabic as prebiotic. International Journal of Dairy Technology, 1–13. https://doi.org/10.1111/1471-0307.12776
dc.relationKasapoğlu, K. N., Daşkaya-Dikmen, C., Yavuz-Düzgün, M., Karaça, A. C., & Özçelik, B. (2019). Enrichment of Beverages with Health Beneficial Ingredients. In Value-Added Ingredients and Enrichments of Beverages. https://doi.org/10.1016/b978-0-12-816687-1.00003-5
dc.relationKhan, R. S., Grigor, J., Winger, R., & Win, A. (2013). Functional food product development - Opportunities and challenges for food manufacturers. Trends in Food Science and Technology, 30(1), 27–37. https://doi.org/10.1016/j.tifs.2012.11.004
dc.relationKiros, E., Seifu, E., Bultosa, G., & Solomon, W. K. (2016). Effect of carrot juice and stabilizer on the physicochemical and microbiological properties of yoghurt. LWT - Food Science and Technology, 69, 191–196. https://doi.org/10.1016/j.lwt.2016.01.026
dc.relationKoca Bozalan, N., & Karadeniz, F. (2011). Carotenoid profile, total phenolic content, and antioxidant activity of carrots. International Journal of Food Properties, 14(5), 1060–1068. https://doi.org/10.1080/10942910903580918
dc.relationKolaček, S., Hojsak, I., Berni Canani, R., Guarino, A., Indrio, F., Orel, R., Pot, B., Shamir, R., Szajewska, H., Vandenplas, Y., Van Goudoever, J., & Weizman, Z. (2017). Commercial Probiotic Products: A Call for Improved Quality Control. A Position Paper by the ESPGHAN Working Group for Probiotics and Prebiotics. Journal of Pediatric Gastroenterology and Nutrition, 65(1), 117–124. https://doi.org/10.1097/MPG.0000000000001603
dc.relationKoutinas, A. A. (2017). Fermented Dairy Products. In Current Developments in Biotechnology and Bioengineering: Food and Beverages Industry. Elsevier B.V. https://doi.org/10.1016/B978-0-444-63666-9.00001-7
dc.relationKun, S., Rezessy-Szabó, J. M., Nguyen, Q. D., & Hoschke, Á. (2008). Changes of microbial population and some components in carrot juice during fermentation with selected Bifidobacterium strains. Process Biochemistry, 43(8), 816–821. https://doi.org/10.1016/j.procbio.2008.03.008
dc.relationMalakar, S., Paul, S. K., & Pou, K. R. J. (2020). Biotechnological Interventions in Beverage Production. In Biotechnological Progress and Beverage Consumption. Elsevier Inc. https://doi.org/10.1016/B978-0-12-816678-9.00001-1
dc.relationMapelli-Brahm, P., Barba, F. J., Remize, F., Garcia, C., Fessard, A., Mousavi Khaneghah, A., Sant’Ana, A. S., Lorenzo, J. M., Montesano, D., & Meléndez-Martínez, A. J. (2020). The impact of fermentation processes on the production, retention and bioavailability of carotenoids: An overview. Trends in Food Science and Technology, 99(December 2019), 389–401. https://doi.org/10.1016/j.tifs.2020.03.013
dc.relationMarsh, A. J., Hill, C., Ross, R. P., & Cotter, P. D. (2014). Fermented beverages with health-promoting potential: Past and future perspectives. Trends in Food Science and Technology, 38(2), 113–124. https://doi.org/10.1016/j.tifs.2014.05.002
dc.relationMehriz Abou El Samh, M., Abou Dawood Sherein, A., & Hebeishy Essam, H. (2013). Properties and antioxident activity of propiotic yoghurt flavored with black carrot, pumpkin and strawberry. International Journal of Dairy Science, 8(2), 48–57. https://doi.org/10.3923/ijds.2013.48.57
dc.relationMgaya-Kilima, B., Remberg, S. F., Chove, B. E., & Wicklund, T. (2015). Physiochemical and antioxidant properties of roselle-mango juice blends; Effects of packaging material, storage temperature and time. Food Science and Nutrition, 3(2), 100–109. https://doi.org/10.1002/fsn3.174
dc.relationMohanty, D., Misra, S., Mohapatra, S., & Sahu, P. S. (2018). Prebiotics and synbiotics: Recent concepts in nutrition. Food Bioscience, 26, 152–160. https://doi.org/10.1016/j.fbio.2018.10.008
dc.relationMorifuji, M., Ichikawa, S., Kitade, M., Fukasawa, T., Asami, Y., Manabe, Y., & Sugawara, T. (2020). Exopolysaccharides from milk fermented by lactic acid bacteria enhance dietary carotenoid bioavailability in humans in a randomized crossover trial and in rats. American Journal of Clinical Nutrition, 111(4), 903–914. https://doi.org/10.1093/ajcn/nqaa020
dc.relationMudgil, D., & Barak, S. (2019). Dairy-Based Functional Beverages. In Milk-Based Beverages. Elsevier Inc. https://doi.org/10.1016/b978-0-12-815504-2.00003-7
dc.relationNeveu, Perez-Jiménez, Vos, Crespy, Chaffaut, D., Mennen, Knox, Eisner, Cruz, Wishart, & Scalbert. (2010). Phenol-explorer: an online comprehensive database on polyphenol contents in foods. Database. Database: The Journal of Biological Databases and Curation, Volume 201(bap024).
dc.relationOliveira, R. P. de S., Perego, P., de Oliveira, M. N., & Converti, A. (2012). Growth, organic acids profile and sugar metabolism of Bifidobacterium lactis in co-culture with Streptococcus thermophilus: The inulin effect. Food Research International, 48(1), 21–27. https://doi.org/10.1016/j.foodres.2012.02.012
dc.relationPanse, M. L., & Phalke, S. D. (2019). Omega-3 Beverages. In Value-Added Ingredients and Enrichments of Beverages (Issue 2005). Elsevier Inc. https://doi.org/10.1016/b978-0-12-816687-1.00011-4
dc.relationPereira, A. P., Oliveira, J. M., Mendes-Ferreira, A., Estevinho, L. M., & Mendes-Faia, A. (2016). Mead and Other Fermented Beverages. In Current Developments in Biotechnology and Bioengineering: Food and Beverages Industry. Elsevier B.V. https://doi.org/10.1016/B978-0-444-63666-9.00014-5
dc.relationPerotti, M. C., Bergamini, C. V., Vénica, C. I., Vélez, M. A., Wolf, I. V., & Hynes, E. (2019). Production of Functional Milk-Based Beverages. In Milk-Based Beverages. Elsevier Inc. https://doi.org/10.1016/b978-0-12-815504-2.00006-2
dc.relationPlaza-Diaz, J., Ruiz-Ojeda, F. J., Gil-Campos, M., & Gil, A. (2019). Mechanisms of Action of Probiotics. Advances in Nutrition, 10, S49–S66. https://doi.org/10.1093/advances/nmy063
dc.relationPokusaeva, K., Fitzgerald, G. F., & Van Sinderen, D. (2011). Carbohydrate metabolism in Bifidobacteria. Genes and Nutrition, 6(3), 285–306. https://doi.org/10.1007/s12263-010-0206-6
dc.relationPop, C. R., Topan, C., Rotar, A. M., Semeniuc, C., & Salanţă, L. (2015). Evaluation the Sensory and Probiotics Properties of the Yogurt Supplemented with Carrot Juice. Bulletin of University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca. Food Science and Technology, 72(2), 5–6. https://doi.org/10.15835/buasvmcn-fst:11533
dc.relationPopkin, B. M., Malik, V., & Hu, F. B. (2015). Beverage: Health Effects. Encyclopedia of Food and Health, 372–380. https://doi.org/10.1016/B978-0-12-384947-2.00063-5
dc.relationPorto, M. C. W., Kuniyoshi, T. M., Azevedo, P. O. S., Vitolo, M., & Oliveira, R. P. S. (2017). Pediococcus spp.: An important genus of lactic acid bacteria and pediocin producers. Biotechnology Advances, 35(3), 361–374. https://doi.org/10.1016/j.biotechadv.2017.03.004
dc.relationPrabhurajeshwar, C., & Chandrakanth, R. K. (2017). Probiotic potential of Lactobacilli with antagonistic activity against pathogenic strains: An in vitro validation for the production of inhibitory substances. Biomedical Journal, 40(5), 270–283. https://doi.org/10.1016/j.bj.2017.06.008
dc.relationPushpadass, H. A., Emerald, F. M. E., Balasubramanyam, B. V., & Patel, S. S. (2019). Rheological Properties of Milk-Based Beverages. In Milk-Based Beverages. Elsevier Inc. https://doi.org/10.1016/b978-0-12-815504-2.00011-6
dc.relationSalehi, F. (2021). Rheological and physicochemical properties of vegetable juices and concentrates: A review. Journal of Food Processing and Preservation, 45(4), 1–13. https://doi.org/10.1111/jfpp.15326
dc.relationSamoggia, A. (2016). Healthy Food: Determinants of Price Knowledge of Functional Dairy Products. Journal of Food Products Marketing, 22(8), 905–929. https://doi.org/10.1080/10454446.2015.1072867
dc.relationŠeregelj, V., Pezo, L., Šovljanski, O., Lević, S., Nedović, V., Markov, S., Tomić, A., Čanadanović-Brunet, J., Vulić, J., Šaponjac, V. T., & Ćetković, G. (2021). New concept of fortified yogurt formulation with encapsulated carrot waste extract. Lwt, 138(December 2020). https://doi.org/10.1016/j.lwt.2020.110732
dc.relationSims, I. M., Ryan, J. L. J., & Kim, S. H. (2014). Invitro fermentation of prebiotic oligosaccharides by Bifidobacterium lactis HN019 and Lactobacillus spp. Anaerobe, 25, 11–17. https://doi.org/10.1016/j.anaerobe.2013.11.001
dc.relationSogi, D. S., Siddiq, M., Greiby, I., & Dolan, K. D. (2013). Total phenolics, antioxidant activity, and functional properties of “Tommy Atkins” mango peel and kernel as affected by drying methods. Food Chemistry, 141(3), 2649–2655. https://doi.org/10.1016/j.foodchem.2013.05.053
dc.relationSoria, A. C., Sanz, M. L., & Villamiel, M. (2009). Determination of minor carbohydrates in carrot (Daucus carota L.) by GC-MS. Food Chemistry, 114(2), 758–762. https://doi.org/10.1016/j.foodchem.2008.10.060
dc.relationSudibyo, A. (2018). Designing Functional Beverages Process : Highlighting Lessons Learned From Research and Development. Jurnal Industri Hasil Perkebunan, 13(1), 19–36. https://doi.org/10.33104/jihp.v13i1.3698
dc.relationSzilagyi, A. (2019). Digestion, absorption, metabolism, and physiological effects of lactose. In Lactose. Elsevier Inc. https://doi.org/10.1016/b978-0-12-811720-0.00002-7
dc.relationTarrega, A., Marcano, J., & Fiszman, S. (2016). Yogurt viscosity and fruit pieces affect satiating capacity expectations. Food Research International, 89, 574–581. https://doi.org/10.1016/j.foodres.2016.09.011
dc.relationTesfaye, W., Suarez-Lepe, J. A., Loira, I., Palomero, F., & Morata, A. (2019). Dairy and Nondairy-Based Beverages as a Vehicle for Probiotics, Prebiotics, and Symbiotics: Alternatives to Health Versus Disease Binomial Approach Through Food. In Milk-Based Beverages. Elsevier Inc. https://doi.org/10.1016/b978-0-12-815504-2.00014-1
dc.relationTurkmen, N., Akal, C., & Özer, B. (2019). Probiotic dairy-based beverages: A review. Journal of Functional Foods, 53(August 2018), 62–75. https://doi.org/10.1016/j.jff.2018.12.004
dc.relationTzanetakis, N., & Litopoulou-Tzanetaki, E. (1989). Biochemical Activities of Pediococcus pentosaceus isolates of Dairy Origin. Journal of Dairy Science, 72(4), 859–863. https://doi.org/10.3168/jds.S0022-0302(89)79178-5
dc.relationVicente, A. R., Manganaris, G. A., Sozzi, G. O., & Crisosto, C. H. (2009). Nutritional Quality of Fruits and Vegetables. In Postharvest Handling (Second Edi). Elsevier Inc. https://doi.org/10.1016/B978-0-12-374112-7.00005-6
dc.relationWalker, C., & Thomas, M. G. (2019). The evolution of lactose digestion. In Lactose. Elsevier Inc. https://doi.org/10.1016/b978-0-12-811720-0.00001-5
dc.relationWallace, T. C., & Giusti, M. M. (2008). Determination of color, pigment, and phenolic stability in yogurt systems colored with nonacylated anthocyanins from Berberis boliviana L. as compared to other natural/synthetic colorants. Journal of Food Science, 73(4). https://doi.org/10.1111/j.1750-3841.2008.00706.x
dc.relationYu, S., Zhou, C., Zhang, T., Jiang, B., & Mu, W. (2015). Short communication: 3-Phenyllactic acid production in milk by Pediococcus pentosaceus SK25 during laboratory fermentation process. Journal of Dairy Science, 98(2), 813–817. https://doi.org/10.3168/jds.2014-8645
dc.relationYusuf, E., Wojdyło, A., Oszmiański, J., & Nowicka, P. (2021). Nutritional, phytochemical characteristics and in vitro effect on α-amylase, α-glucosidase, lipase, and cholinesterase activities of 12 coloured carrot varieties. Foods, 10(4). https://doi.org/10.3390/foods10040808
dc.relationAmmar, E.-T. M. A., Ismail, M. M., Khalil, A. E.-W. E., & Eid, M. Z. (2015). Impact of fortification with honey on some properties of bio-yoghurt. Journal of Microbiology, Biotechnology and Food Sciences, 04(06), 503–508. https://doi.org/10.15414/jmbfs.2015.4.6.503-508
dc.relationArena, M. P., Caggianiello, G., Russo, P., Albenzio, M., Massa, S., Fiocco, D., Capozzi, V., & Spano, G. (2015). Functional starters for functional yogurt. Foods, 4(1), 15–33. https://doi.org/10.3390/foods4010015
dc.relationBadarinath, A. V, Rao, K. M., Madhu, C., Chetty, S., Ramkanth, S., Rajan, T. V. S., & Gnanaprakash, K. (2010). A Review on In-vitro Antioxidant Methods: Comparisions, Correlations and Considerations. International Journal of PharmTech Research, 2(2), 1276–1285.
dc.relationBehare, P., Kumar, H., & Mandal, S. (2015). Yogurt: Yogurt Based Products. In Encyclopedia of Food and Health (1st ed., pp. 625–631). Elsevier Ltd. https://doi.org/10.1016/B978-0-12-384947-2.00767-4
dc.relationBernal, L. (2012). Evaluación de las Propiedades Bioactivas de Mora (Rubus glaucus) y Agraz (Vaccinium meridionale Swartz), en Fresco y Durante Procesos de Transformación. Universidad Nacional de Colombia.
dc.relationBosma, E. F., Forster, J., & Nielsen, A. T. (2017). Lactobacilli and pediococci as versatile cell factories – Evaluation of strain properties and genetic tools. Biotechnology Advances, 35(4), 419–442. https://doi.org/10.1016/j.biotechadv.2017.04.002
dc.relationBove, C. G., De Angelis, M., Gatti, M., Calasso, M., Neviani, E., & Gobbetti, M. (2012). Metabolic and proteomic adaptation of Lactobacillus rhamnosus strains during growth under cheese-like environmental conditions compared to de Man, Rogosa, and Sharpe medium. Proteomics, 12(21), 3206–3218. https://doi.org/10.1002/pmic.201200157
dc.relationBultosa, G. (2015). Functional Foods: Dietary Fibers, Prebiotics, Probiotics, and Synbiotics. In Encyclopedia of Food Grains: Second Edition (2nd ed., Vols. 2–4). Elsevier Ltd. https://doi.org/10.1016/B978-0-12-394437-5.00245-X
dc.relationCorrieu, G., & Béal, C. (2015). Yogurt: The Product and its Manufacture. Encyclopedia of Food and Health, 617–624. https://doi.org/10.1016/B978-0-12-384947-2.00766-2
dc.relationDaneshi, M., Ehsani, M. R., Razavi, S. H., & Labbafi, M. (2013). Effect of refrigerated storage on the probiotic survival and sensory properties of milk/carrot juice mix drink. Electronic Journal of Biotechnology, 16(5). https://doi.org/10.2225/vol16-issue5-fulltext-2
dc.relationDatta, S. (2017). Chapter 10 - Sourcing, supply chain, and manufacturing of nutraceutical and functional foods. In Developing New Functional Food and Nutraceutical Products. Elsevier Inc. https://doi.org/10.1016/B978-0-12-802780-6/00010-9
dc.relationdo Espírito Santo, A. P., Perego, P., Converti, A., & Oliveira, M. N. (2012). Influence of milk type and addition of passion fruit peel powder on fermentation kinetics, texture profile and bacterial viability in probiotic yoghurts. LWT - Food Science and Technology, 47(2), 393–399. https://doi.org/10.1016/j.lwt.2012.01.038
dc.relationDubey, N., Mishra, V., & Thakur, D. (2018). Plant-Based Antimicrobial Formulations. In Postharvest Disinfection of Fruits and Vegetables. Elsevier Inc. https://doi.org/10.1016/b978-0-12-812698-1.00011-x
dc.relationFan, L., & Cliff, M. (2017). Carrot juice yogurts: Composition, microbiology, and sensory acceptance. In Yogurt in Health and Disease Prevention. Elsevier Inc. https://doi.org/10.1016/B978-0-12-805134-4.00012-2
dc.relationFazilah, N. F., Ariff, A. B., Khayat, M. E., Rios-Solis, L., & Halim, M. (2018). Influence of probiotics, prebiotics, synbiotics and bioactive phytochemicals on the formulation of functional yogurt. Journal of Functional Foods, 48(April), 387–399. https://doi.org/10.1016/j.jff.2018.07.039
dc.relationFigueroa-González, I., Rodríguez-Serrano, G., Gómez-Ruiz, L., García-Garibay, M., & Cruz-Guerrero, A. (2019). Prebiotic effect of commercial saccharides on probiotic bacteria isolated from commercial products. Food Science and Technology, 39(3), 747–753. https://doi.org/10.1590/fst.07318
dc.relationFlach, J., Waal, M. B. Van Der, Nieuwboer, M. Van Den, Claassen, E., & Larsen, O. F. A. (2017). The underexposed role of food matrices in probiotic products : Reviewing the relationship between carrier matrices and product parameters. Critical Reviews in Food Science and Nutrition, 1–16. https://doi.org/10.1080/10408398.2017.1334624
dc.relationG. Zaini, R., Brandt, K., R. Clench, M., & L. Le Maitre, C. (2012). Effects of Bioactive Compounds from Carrots (Daucus carota L.), Polyacetylenes, Beta-Carotene and Lutein on Human Lymphoid Leukaemia Cells. Anti-Cancer Agents in Medicinal Chemistry, 12(6), 640–652. https://doi.org/10.2174/187152012800617704
dc.relationGalvis-Sánchez, A. C., & Vinholes, J. (2017). Fruit Juices (Apple, Peach, and Pear) and Changes in the Carotenoid Profile. In Fruit Juices: Extraction, Composition, Quality and Analysis (pp. 59–74). https://doi.org/10.1016/B978-0-12-802230-6.00005-9
dc.relationGardana, C., Del, C., Quicazán, M. C., Ruby, A., & Simonetti, P. (2018). Journal of Food Composition and Analysis Nutrients , phytochemicals and botanical origin of commercial bee pollen from di ff erent geographical areas. Journal of Food Composition and Analysis, 73(June), 29–38. https://doi.org/10.1016/j.jfca.2018.07.009
dc.relationGasaly, N., Riveros, K., & Gotteland, M. (2020). Fitoquímicos: una nueva clase de prebióticos. Revista Chilena de Nutrición, 47(2), 317–327. https://doi.org/10.4067/s0717-75182020000200317
dc.relationGibson, G. R., Hutkins, R., Sanders, M. E., Prescott, S. L., Reimer, R. A., Salminen, S. J., Scott, K., Stanton, C., Swanson, K. S., Cani, P. D., Verbeke, K., & Reid, G. (2017a). Expert consensus document: The International Scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of prebiotics. Nature Reviews Gastroenterology and Hepatology, 14(8), 491–502. https://doi.org/10.1038/nrgastro.2017.75
dc.relationGies, M., Descalzo, A. M., Servent, A., & Dhuique-Mayer, C. (2019). Incorporation and stability of carotenoids in a functional fermented maize yogurt-like product containing phytosterols. Lwt, 111(February), 105–110. https://doi.org/10.1016/j.lwt.2019.04.103
dc.relationHagi, T., Kobayashi, M., & Nomura, M. (2014). Aerobic condition increases carotenoid production associated with oxidative stress tolerance in Enterococcus gilvus. FEMS Microbiology Letters, 350(2), 223–230. https://doi.org/10.1111/1574-6968.12341
dc.relationHashemi Gahruie, H., Eskandari, M. H., Mesbahi, G., & Hanifpour, M. A. (2015). Scientific and technical aspects of yogurt fortification: A review. Food Science and Human Wellness, 4(1), 1–8. https://doi.org/10.1016/j.fshw.2015.03.002
dc.relationHuebner, J., Wehling, R. L., & Hutkins, R. W. (2007). Functional activity of commercial prebiotics. International Dairy Journal, 17(7), 770–775. https://doi.org/10.1016/j.idairyj.2006.10.006
dc.relationJanuário, J. G. B., da Silva, I. C. F., de Oliveira, A. S., de Oliveira, J. F., Dionísio, J. N., Klososki, S. J., & Pimentel, T. C. (2017). Probiotic yoghurt flavored with organic beet with carrot, cassava, sweet potato or corn juice. International Food Research Journal, 24(1), 359–366. http://www.ifrj.upm.edu.my
dc.relationJones, R. M. (2016). The Use of Lactobacillus casei and Lactobacillus paracasei in Clinical Trials for the Improvement of Human Health. In The Microbiota in Gastrointestinal Pathophysiology: Implications for Human Health, Prebiotics, Probiotics, and Dysbiosis. Elsevier Inc. https://doi.org/10.1016/B978-0-12-804024-9.00009-4
dc.relationKiros, E., Seifu, E., Bultosa, G., & Solomon, W. K. (2016a). Effect of carrot juice and stabilizer on the physicochemical and microbiological properties of yoghurt. LWT - Food Science and Technology, 69, 191–196. https://doi.org/10.1016/j.lwt.2016.01.026
dc.relationKoutinas, A. A. (2017). Fermented Dairy Products. In Current Developments in Biotechnology and Bioengineering: Food and Beverages Industry. Elsevier B.V. https://doi.org/10.1016/B978-0-444-63666-9.00001-7
dc.relationKun, S., Rezessy-Szabó, J. M., Nguyen, Q. D., & Hoschke, Á. (2008). Changes of microbial population and some components in carrot juice during fermentation with selected Bifidobacterium strains. Process Biochemistry, 43(8), 816–821. https://doi.org/10.1016/j.procbio.2008.03.008
dc.relationLuciano, W. A., Matte, T. C., Portela, I. A., de Medeiros, L. L., dos Santos Lima, M., Maciel, J. F., de Souza, E. L., Garcia, E. F., & Magnani, M. (2018). Effects of Lactobacillus acidophilus LA-3 on physicochemical and sensory parameters of açaí and mango based smoothies and its survival following simulated gastrointestinal conditions. Food Research International, 114, 159–168. https://doi.org/10.1016/j.foodres.2018.08.005
dc.relationMachado, T. A. D. G., de Oliveira, M. E. G., Campos, M. I. F., de Assis, P. O. A., de Souza, E. L., Madruga, M. S., Pacheco, M. T. B., Pintado, M. M. E., & Queiroga, R. de C. R. do E. (2017). Impact of honey on quality characteristics of goat yogurt containing probiotic Lactobacillus acidophilus. LWT - Food Science and Technology, 80, 221–229. https://doi.org/10.1016/j.lwt.2017.02.013
dc.relationMalakar, S., Paul, S. K., & Pou, K. R. J. (2020). Biotechnological Interventions in Beverage Production. In Biotechnological Progress and Beverage Consumption. Elsevier Inc. https://doi.org/10.1016/B978-0-12-816678-9.00001-1
dc.relationMančušková, T., Medved’ová, A., & Valík, Ľ. (2015). Viability of Lactobacillus acidophilus NCFM Howaru Dophilus during storage at refrigeration temperatures. Acta Chimica Slovaca, 8(1), 17–21. https://doi.org/10.1515/acs-2015-0004
dc.relationMohanty, D., Misra, S., Mohapatra, S., & Sahu, P. S. (2018). Prebiotics and synbiotics: Recent concepts in nutrition. Food Bioscience, 26, 152–160. https://doi.org/10.1016/j.fbio.2018.10.008
dc.relationMousavi, M., Heshmati, A., Garmakhany, A. D., Vahidinia, A., & Taheri, M. (2019). Optimization of the viability of Lactobacillus acidophilus and physico-chemical, textural and sensorial characteristics of flaxseed-enriched stirred probiotic yogurt by using response surface methodology. Lwt, 102(September 2018), 80–88. https://doi.org/10.1016/j.lwt.2018.12.023
dc.relationNates-parra, G., Sc, M., Montoya, P. M., Sc, M., Chamorro, F. J., & Biología, L. (n.d.-a). Apis mellifera ( APIDAE ) EN CUATRO DEPARTAMENTOS DE COLOMBIA Geographical and Botanical Origin of Apis mellifera ( APIDAE ) Honey in four Colombian Departments. 18(3), 427–437.
dc.relationPandey, P., Grover, K., Dhillon, T. S., Kaur, A., & Javed, M. (2021). Evaluation of polyphenols enriched dairy products developed by incorporating black carrot (Daucus carota L.) concentrate. Heliyon, 7(5), e06880. https://doi.org/10.1016/j.heliyon.2021.e06880
dc.relationPerricone, M., Corbo, M. R., Sinigaglia, M., Speranza, B., & Bevilacqua, A. (2014). Viability of Lactobacillus reuteri in fruit juices. Journal of Functional Foods, 10, 421–426. https://doi.org/10.1016/j.jff.2014.07.020
dc.relationPop, C. R., Topan, C., Rotar, A. M., Semeniuc, C., & Salanţă, L. (2015). Evaluation the Sensory and Probiotics Properties of the Yogurt Supplemented with Carrot Juice. Bulletin of University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca. Food Science and Technology, 72(2), 5–6. https://doi.org/10.15835/buasvmcn-fst:11533
dc.relationRabiu, B., Jay, A., Gibson, G., & Rastall, R. A. (2001). Synthesis and fermentation properties of novel galacto-oligosaccharides by beta-galactosidases from Bifidobacterium species. Applied and Environmental Microbiology, 67, 2526–2530. https://doi.org/10.1017/S002211207300042X
dc.relationŠeregelj, V., Pezo, L., Šovljanski, O., Lević, S., Nedović, V., Markov, S., Tomić, A., Čanadanović-Brunet, J., Vulić, J., Šaponjac, V. T., & Ćetković, G. (2021). New concept of fortified yogurt formulation with encapsulated carrot waste extract. Lwt, 138(December 2020). https://doi.org/10.1016/j.lwt.2020.110732
dc.relationSharma, K. D., Karki, S., Thakur, N. S., & Attri, S. (2012). Chemical composition, functional properties and processing of carrot-A review. Journal of Food Science and Technology, 49(1), 22–32. https://doi.org/10.1007/s13197-011-0310-7
dc.relationShewale, R. N., Sawale, P. D., Khedkar, C. D., & Singh, A. (2014). Selection criteria for probiotics: A review Department of Dairy Microbiology College of Dairy Technology , Pusad , India ; International Journal of Probiotics and Prebiotics, 9(1), 2014.
dc.relationSivieri, K., Freire, F. C., Lopes, N. P., Shiraishi, C. T. D., Pires, A. C. M. S., Lima, A. C. D., Zavarizi, A. C. M., Sgarbosa, L., & Bianchi, F. (2017). Synbiotic yogurts and the elderly. In Yogurt in Health and Disease Prevention. Elsevier Inc. https://doi.org/10.1016/B978-0-12-805134-4.00014-6
dc.relationSoria, A. C., Sanz, M. L., & Villamiel, M. (2009). Determination of minor carbohydrates in carrot (Daucus carota L.) by GC-MS. Food Chemistry, 114(2), 758–762. https://doi.org/10.1016/j.foodchem.2008.10.060
dc.relationSudheer Kumar, Y., Varakumar, S., & Reddy, O. V. S. (2012). Evaluation of antioxidant and sensory properties of mango (Mangifera indica L.) wine. CYTA - Journal of Food, 10(1), 12–20. https://doi.org/10.1080/19476337.2010.530693
dc.relationTan, J., McKenzie, C., Vuillermin, P. J., Goverse, G., Vinuesa, C. G., Mebius, R. E., Macia, L., & Mackay, C. R. (2016). Dietary Fiber and Bacterial SCFA Enhance Oral Tolerance and Protect against Food Allergy through Diverse Cellular Pathways. Cell Reports, 15(12), 2809–2824. https://doi.org/10.1016/j.celrep.2016.05.047
dc.relationTesfaye, W., Suarez-Lepe, J. A., Loira, I., Palomero, F., & Morata, A. (2019). Dairy and Nondairy-Based Beverages as a Vehicle for Probiotics, Prebiotics, and Symbiotics: Alternatives to Health Versus Disease Binomial Approach Through Food. In Milk-Based Beverages. Elsevier Inc. https://doi.org/10.1016/b978-0-12-815504-2.00014-1
dc.relationTheis, S. (2018). Authorised EU health claim for chicory inulin. In Foods, Nutrients and Food Ingredients with Authorised EU Health Claims (Vol. 3). Elsevier Ltd. https://doi.org/10.1016/B978-0-08-100922-2.00010-3
dc.relationTripuraneni, S. (2011). Effect of nutrient supplements on cucumber fermentation by lactic acid bacteria. 104. http://gradworks.umi.com/15/01/1501161.html
dc.relationVidhyasagar, V., & Jeevaratnam, K. (2013). Evaluation of Pediococcus pentosaceus strains isolated from Idly batter for probiotic properties in vitro. Journal of Functional Foods, 5(1), 235–243. https://doi.org/10.1016/j.jff.2012.10.012
dc.relationVinderola, G., Burns, P., & Reinheimer, J. (2017). Probiotics in Nondairy Products. In Vegetarian and Plant-Based Diets in Health and Disease Prevention (Issue 3). Elsevier. https://doi.org/10.1016/B978-0-12-803968-7.00044-7
dc.relationYusuf, E., Wojdyło, A., Oszmiański, J., & Nowicka, P. (2021). Nutritional, phytochemical characteristics and in vitro effect on α-amylase, α-glucosidase, lipase, and cholinesterase activities of 12 coloured carrot varieties. Foods, 10(4). https://doi.org/10.3390/foods10040808
dc.relationAkalin, A. S., Unal, G., Dinkci, N., & Hayaloglu, A. A. (2012). Microstructural, textural, and sensory characteristics of probiotic yogurts fortified with sodium calcium caseinate or whey protein concentrate. Journal of Dairy Science, 95(7), 3617–3628. https://doi.org/10.3168/jds.2011-5297
dc.relationAllgeyer, L. C., Miller, M. J., & Lee, S. Y. (2010). Sensory and microbiological quality of yogurt drinks with prebiotics and probiotics. Journal of Dairy Science, 93(10), 4471–4479. https://doi.org/10.3168/jds.2009-2582
dc.relationAmmar, E.-T. M. A., Ismail, M. M., Khalil, A. E.-W. E., & Eid, M. Z. (2015). Impact of fortification with honey on some properties of bio-yoghurt. Journal of Microbiology, Biotechnology and Food Sciences, 04(06), 503–508. https://doi.org/10.15414/jmbfs.2015.4.6.503-508
dc.relationArena, M. P., Caggianiello, G., Russo, P., Albenzio, M., Massa, S., Fiocco, D., Capozzi, V., & Spano, G. (2015). Functional starters for functional yogurt. Foods, 4(1), 15–33. https://doi.org/10.3390/foods4010015
dc.relationArora, S., Siddiqui, S., & Gehlot, R. (2019). Physicochemical and Bioactive Compounds in Carrot and Beetroot Juice. Asian Journal of Dairy and Food Research, 38(03). https://doi.org/10.18805/ajdfr.dr-1363
dc.relationAshraf, R., & Shah, N. P. (2011). Selective and differential enumerations of Lactobacillus delbrueckii subsp. bulgaricus, Streptococcus thermophilus, Lactobacillus acidophilus, Lactobacillus casei and Bifidobacterium spp. in yoghurt - A review. International Journal of Food Microbiology, 149(3), 194–208. https://doi.org/10.1016/j.ijfoodmicro.2011.07.008
dc.relationAuthority, E. F. S. (2010). Guidance on the risk assessment of genetically modified microorganisms and their food and feed products. EFSA Journal, January, 1–67. https://doi.org/10.2903/j.efsa.20YY.NNNN.Available
dc.relationBadarinath, A. V, Rao, K. M., Madhu, C., Chetty, S., Ramkanth, S., Rajan, T. V. S., & Gnanaprakash, K. (2010). A Review on In-vitro Antioxidant Methods: Comparisions, Correlations and Considerations. International Journal of PharmTech Research, 2(2), 1276–1285
dc.relationBehare, P., Kumar, H., & Mandal, S. (2015). Yogurt: Yogurt Based Products. In Encyclopedia of Food and Health (1st ed., pp. 625–631). Elsevier Ltd. https://doi.org/10.1016/B978-0-12-384947-2.00767-4
dc.relationBohn, T., Desmarchelier, C., Dragsted, L. O., Nielsen, C. S., Stahl, W., Rühl, R., Keijer, J., & Borel, P. (2017). Host-related factors explaining interindividual variability of carotenoid bioavailability and tissue concentrations in humans. Molecular Nutrition and Food Research, 61(6), 1–37. https://doi.org/10.1002/mnfr.201600685
dc.relationBosma, E. F., Forster, J., & Nielsen, A. T. (2017). Lactobacilli and pediococci as versatile cell factories – Evaluation of strain properties and genetic tools. Biotechnology Advances, 35(4), 419–442. https://doi.org/10.1016/j.biotechadv.2017.04.002
dc.relationove, C. G., De Angelis, M., Gatti, M., Calasso, M., Neviani, E., & Gobbetti, M. (2012). Metabolic and proteomic adaptation of Lactobacillus rhamnosus strains during growth under cheese-like environmental conditions compared to de Man, Rogosa, and Sharpe medium. Proteomics, 12(21), 3206–3218. https://doi.org/10.1002/pmic.201200157
dc.relationBultosa, G. (2015). Functional Foods: Dietary Fibers, Prebiotics, Probiotics, and Synbiotics. In Encyclopedia of Food Grains: Second Edition (2nd ed., Vols. 2–4). Elsevier Ltd. https://doi.org/10.1016/B978-0-12-394437-5.00245-X
dc.relationButel, M. J. (2014). Probiotics, gut microbiota and health. Medecine et Maladies Infectieuses, 44(1), 1–8. https://doi.org/10.1016/j.medmal.2013.10.002
dc.relationCaldeira, L. A., Alves, É. E., Ribeiro, A. de M. F., Rocha Júnior, V. R., Antunes, A. B., dos Reis, A. F., Gomes, J. da C., de Carvalho, M. H. R., & Martinez, R. I. E. (2018). Viability of probiotic bacteria in bioyogurt with the addition of honey from Jataí and Africanized bees. Pesquisa Agropecuaria Brasileira, 53(2), 206–211. https://doi.org/10.1590/S0100-204X2018000200009
dc.relationChanalia, P., Gandhi, D., Attri, P., & Dhanda, S. (2018). Purification and characterization of β-galactosidase from probiotic Pediococcus acidilactici and its use in milk lactose hydrolysis and galactooligosaccharide synthesis. Bioorganic Chemistry, 77, 176–189. https://doi.org/10.1016/j.bioorg.2018.01.006
dc.relationChung, H. J., Lee, H., Na, G., Jung, H., Kim, D. G., Shin, S. I., Jung, S. E., Choi, I. D., Lee, J. H., Sim, J. H., & Choi, H. K. (2020). Metabolic and lipidomic profiling of vegetable juices fermented with various probiotics. Biomolecules, 10(5), 1–17. https://doi.org/10.3390/biom10050725
dc.relationCorbo, M. R., Bevilacqua, A., Petruzzi, L., Casanova, F. P., & Sinigaglia, M. (2014). Functional Beverages: The Emerging Side of Functional Foods: Commercial Trends, Research, and Health Implications. Comprehensive Reviews in Food Science and Food Safety, 13(6), 1192–1206. https://doi.org/10.1111/1541-4337.12109
dc.relationCunningham, M., Azcarate-Peril, M. A., Barnard, A., Benoit, V., Grimaldi, R., Guyonnet, D., Holscher, H. D., Hunter, K., Manurung, S., Obis, D., Petrova, M. I., Steinert, R. E., Swanson, K. S., van Sinderen, D., Vulevic, J., & Gibson, G. R. (2021). Shaping the Future of Probiotics and Prebiotics. Trends in Microbiology, 29(8), 667–685. https://doi.org/10.1016/j.tim.2021.01.003
dc.relationDaneshi, M., Ehsani, M. R., Razavi, S. H., & Labbafi, M. (2013). Effect of refrigerated storage on the probiotic survival and sensory properties of milk/carrot juice mix drink. Electronic Journal of Biotechnology, 16(5). https://doi.org/10.2225/vol16-issue5-fulltext-2
dc.relationDatta, S. (2017). Chapter 10 - Sourcing, supply chain, and manufacturing of nutraceutical and functional foods. In Developing New Functional Food and Nutraceutical Products. Elsevier Inc. https://doi.org/10.1016/B978-0-12-802780-6/00010-9
dc.relationDe Bellis, P., Sisto, A., & Lavermicocca, P. (2021). Probiotic bacteria and plant-based matrices: An association with improved health-promoting features. Journal of Functional Foods, 87(July), 104821. https://doi.org/10.1016/j.jff.2021.104821
dc.relationde Oliveira, P. M., Leite Júnior, B. R. de C., Martins, E. M. F., Martins, M. L., Vieira, É. N. R., de Barros, F. A. R., Cristianini, M., de Almeida Costa, N., & Ramos, A. M. (2021). Mango and carrot mixed juice: a new matrix for the vehicle of probiotic lactobacilli. Journal of Food Science and Technology, 58(1), 98–109. https://doi.org/10.1007/s13197-020-04518-y
dc.relationDevaki, C. S., & Premavalli, K. S. (2019). Fermented Vegetable Beverages. In Fermented Beverages. Elsevier Inc. https://doi.org/10.1016/b978-0-12-815271-3.00008-7
dc.relationdo Espírito Santo, A. P., Perego, P., Converti, A., & Oliveira, M. N. (2012). Influence of milk type and addition of passion fruit peel powder on fermentation kinetics, texture profile and bacterial viability in probiotic yoghurts. LWT - Food Science and Technology, 47(2), 393–399. https://doi.org/10.1016/j.lwt.2012.01.038
dc.relationDo Espírito Santo, Ana Paula, Cartolano, N. S., Silva, T. F., Soares, F. A. S. M., Gioielli, L. A., Perego, P., Converti, A., & Oliveira, M. N. (2012). Fibers from fruit by-products enhance probiotic viability and fatty acid profile and increase CLA content in yoghurts. International Journal of Food Microbiology, 154(3), 135–144. https://doi.org/10.1016/j.ijfoodmicro.2011.12.025
dc.relationDubey, N., Mishra, V., & Thakur, D. (2018). Plant-Based Antimicrobial Formulations. In Postharvest Disinfection of Fruits and Vegetables. Elsevier Inc. https://doi.org/10.1016/b978-0-12-812698-1.00011-x
dc.relationEscamilla-Hurtado, M. L., Valdés-Martínez, S. E., Soriano-Santos, J., Gómez-Pliego, R., Verde-Calvo, J. R., Reyes-Dorantes, A., & Tomasini-Campocosio, A. (2005). Effect of culture conditions on production of butter flavor compounds by Pediococcus pentosaceus and Lactobacillus acidophilus in semisolid maize-based cultures. International Journal of Food Microbiology, 105(3), 305–316. https://doi.org/10.1016/j.ijfoodmicro.2005.04.014
dc.relationEsmaeilnejad Moghadam, B., Keivaninahr, F., Nazemi, A., Fouladi, M., Rezaei Mokarram, R., & Zoroufchi Benis, K. (2019). Optimization of conjugated linoleic acid production by Bifidobacterium animalis subsp. Lactis and its application in fermented milk. Lwt, 108(March), 344–352. https://doi.org/10.1016/j.lwt.2019.03.071
dc.relationFan, L., & Cliff, M. (2017). Carrot juice yogurts: Composition, microbiology, and sensory acceptance. In Yogurt in Health and Disease Prevention. Elsevier Inc. https://doi.org/10.1016/B978-0-12-805134-4.00012-2
dc.relationFazilah, N. F., Ariff, A. B., Khayat, M. E., Rios-Solis, L., & Halim, M. (2018a). Influence of probiotics, prebiotics, synbiotics and bioactive phytochemicals on the formulation of functional yogurt. Journal of Functional Foods, 48(July), 387–399. https://doi.org/10.1016/j.jff.2018.07.039
dc.relationFigueroa-González, I., Rodríguez-Serrano, G., Gómez-Ruiz, L., García-Garibay, M., & Cruz-Guerrero, A. (2019). Prebiotic effect of commercial saccharides on probiotic bacteria isolated from commercial products. Food Science and Technology, 39(3), 747–753. https://doi.org/10.1590/fst.07318
dc.relationFijan, S. (2016). Antimicrobial Effect of Probiotics against Common Pathogens. Probiotics and Prebiotics in Human Nutrition and Health. https://doi.org/10.5772/63141
dc.relationFlach, J., Waal, M. B. Van Der, Nieuwboer, M. Van Den, Claassen, E., & Larsen, O. F. A. (2017). The underexposed role of food matrices in probiotic products : Reviewing the relationship between carrier matrices and product parameters. Critical Reviews in Food Science and Nutrition, 1–16. https://doi.org/10.1080/10408398.2017.1334624
dc.relationFlorence, A. C. R., Oliveira, R. P. S., Silva, R. C., Soares, F. A. S. M., Gioielli, L. A., & Oliveira, M. N. (2012). Organic milk improves Bifidobacterium lactis counts and bioactive fatty acids contents in fermented milk. LWT - Food Science and Technology, 49(1), 89–95. https://doi.org/10.1016/j.lwt.2012.04.023
dc.relationG. Zaini, R., Brandt, K., R. Clench, M., & L. Le Maitre, C. (2012). Effects of Bioactive Compounds from Carrots (Daucus carota L.), Polyacetylenes, Beta-Carotene and Lutein on Human Lymphoid Leukaemia Cells. Anti-Cancer Agents in Medicinal Chemistry, 12(6), 640–652. https://doi.org/10.2174/187152012800617704
dc.relationGalvis-Sánchez, A. C., & Vinholes, J. (2017). Fruit Juices (Apple, Peach, and Pear) and Changes in the Carotenoid Profile. In Fruit Juices: Extraction, Composition, Quality and Analysis (pp. 59–74). https://doi.org/10.1016/B978-0-12-802230-6.00005-9
dc.relationGardana, C., Del, C., Quicazán, M. C., Ruby, A., & Simonetti, P. (2018). Journal of Food Composition and Analysis Nutrients, phytochemicals and botanical origin of commercial bee pollen from di fferent geographical areas. Journal of Food Composition and Analysis, 73(June), 29–38. https://doi.org/10.1016/j.jfca.2018.07.009
dc.relationGasaly, N., Riveros, K., & Gotteland, M. (2020). Fitoquímicos: una nueva clase de prebióticos. Revista Chilena de Nutrición, 47(2), 317–327. https://doi.org/10.4067/s0717-75182020000200317
dc.relationGibson, G. R., Hutkins, R., Sanders, M. E., Prescott, S. L., Reimer, R. A., Salminen, S. J., Scott, K., Stanton, C., Swanson, K. S., Cani, P. D., Verbeke, K., & Reid, G. (2017a). Expert consensus document: The International Scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of prebiotics. Nature Reviews Gastroenterology and Hepatology, 14(8), 491–502. https://doi.org/10.1038/nrgastro.2017.75
dc.relationGies, M., Descalzo, A. M., Servent, A., & Dhuique-Mayer, C. (2019). Incorporation and stability of carotenoids in a functional fermented maize yogurt-like product containing phytosterols. Lwt, 111(February), 105–110. https://doi.org/10.1016/j.lwt.2019.04.103
dc.relationGil-Rodríguez, A. M., & Beresford, T. P. (2019). Lipase inhibitory activity of skim milk fermented with different strains of lactic acid bacteria. Journal of Functional Foods, 60(May), 103413. https://doi.org/10.1016/j.jff.2019.06.015
dc.relationGovender, M., Choonara, Y. E., Kumar, P., Du Toit, L. C., Van Vuuren, S., & Pillay, V. (2014). A review of the advancements in probiotic delivery: Conventional vs. Non-conventional formulations for intestinal flora supplementation. AAPS PharmSciTech, 15(1), 29–43. https://doi.org/10.1208/s12249-013-0027-1
dc.relationGuneser, O., Isleten Hosoglu, M., Aydeniz Guneser, B., & Karagul Yuceer, Y. (2019). Engineering of Milk-Based Beverages: Current Status, Developments, and Consumer Trends. In Milk-Based Beverages (Vol. 2015). Elsevier Inc. https://doi.org/10.1016/b978-0-12-815504-2.00001-3
dc.relationGutiérrez-Cortés, C., Suarez, H., Buitrago, G., Nero, L. A., & Todorov, S. D. (2018). Characterization of bacteriocins produced by strains of Pediococcus pentosaceus isolated from Minas cheese. Annals of Microbiology, 68(6), 383–398. https://doi.org/10.1007/s13213-018-1345-z
dc.relationHagi, T., Kobayashi, M., & Nomura, M. (2014). Aerobic condition increases carotenoid production associated with oxidative stress tolerance in Enterococcus gilvus. FEMS Microbiology Letters, 350(2), 223–230. https://doi.org/10.1111/1574-6968.12341
dc.relationHan, D., Yan, Q., Liu, J., Jiang, Z., & Yang, S. (2021). Transcriptomic Analysis of Pediococcus pentosaceus Reveals Carbohydrate Metabolic Dynamics Under Lactic Acid Stress. Frontiers in Microbiology, 12(September), 1–12. https://doi.org/10.3389/fmicb.2021.736411
dc.relationHashemi Gahruie, H., Eskandari, M. H., Mesbahi, G., & Hanifpour, M. A. (2015). Scientific and technical aspects of yogurt fortification: A review. Food Science and Human Wellness, 4(1), 1–8. https://doi.org/10.1016/j.fshw.2015.03.002
dc.relationHe, M., Tan, C. P., Liu, Y., & Xu, Y. J. (2021). Foodomics: a new perspective on gut probiotics nutrition and health research. Current Opinion in Food Science, 41, 146–151. https://doi.org/10.1016/j.cofs.2021.04.004
dc.relationHickson, M. (2014). Probiotics and the gastrointestinal microbiota. Advanced Nutrition and Dietetics in Gastroenterology, 81–86. https://doi.org/10.1002/9781118872796.ch2.3
dc.relationHill, D., Ross, R. P., Arendt, E., & Stanton, C. (2017). Microbiology of yogurt and bio-yogurts containing probiotics and prebiotics. In Yogurt in Health and Disease Prevention. Elsevier Inc. https://doi.org/10.1016/B978-0-12-805134-4.00004-3
dc.relationHuebner, J., Wehling, R. L., & Hutkins, R. W. (2007). Functional activity of commercial prebiotics. International Dairy Journal, 17(7), 770–775. https://doi.org/10.1016/j.idairyj.2006.10.006
dc.relationHuppertz, T. (2016). Heat stability of milk. Advanced Dairy Chemistry: Volume 1B: Proteins: Applied Aspects: Fourth Edition, 57(2), 179–196. https://doi.org/10.1007/978-1-4939-2800-2_7
dc.relationJanuário, J. G. B., da Silva, I. C. F., de Oliveira, A. S., de Oliveira, J. F., Dionísio, J. N., Klososki, S. J., & Pimentel, T. C. (2017). Probiotic yoghurt flavored with organic beet with carrot, cassava, sweet potato or corn juice. International Food Research Journal, 24(1), 359–366. http://www.ifrj.upm.edu.my
dc.relationJia, R., Chen, H., Chen, H., & Ding, W. (2016). Effects of fermentation with Lactobacillus rhamnosus GG on product quality and fatty acids of goat milk yogurt. Journal of Dairy Science, 99(1), 221–227. https://doi.org/10.3168/jds.2015-10114
dc.relationJiang, S., Cai, L., Lv, L., & Li, L. (2021). Pediococcus pentosaceus, a future additive or probiotic candidate. Microbial Cell Factories, 20(1), 1–14. https://doi.org/10.1186/s12934-021-01537-y
dc.relationJones, R. M. (2016). The Use of Lactobacillus casei and Lactobacillus paracasei in Clinical Trials for the Improvement of Human Health. In The Microbiota in Gastrointestinal Pathophysiology: Implications for Human Health, Prebiotics, Probiotics, and Dysbiosis. Elsevier Inc. https://doi.org/10.1016/B978-0-12-804024-9.00009-4
dc.relationKandylis, P., Pissaridi, K., Bekatorou, A., Kanellaki, M., & Koutinas, A. A. (2016). Dairy and non-dairy probiotic beverages. Current Opinion in Food Science, 7, 58–63. https://doi.org/10.1016/j.cofs.2015.11.012
dc.relationKaraman, S., & Ozcan, T. (2021). Determination of gelation properties and bio-therapeutic potential of black carrot fibre-enriched functional yoghurt produced using pectin and gum arabic as prebiotic. International Journal of Dairy Technology, 1–13. https://doi.org/10.1111/1471-0307.12776
dc.relationKasapoğlu, K. N., Daşkaya-Dikmen, C., Yavuz-Düzgün, M., Karaça, A. C., & Özçelik, B. (2019). Enrichment of Beverages With Health Beneficial Ingredients. In Value-Added Ingredients and Enrichments of Beverages. https://doi.org/10.1016/b978-0-12-816687-1.00003-5
dc.relationKaškonienė, V., Adaškevičiūtė, V., Kaškonas, P., Mickienė, R., & Maruška, A. (2020). Antimicrobial and antioxidant activities of natural and fermented bee pollen. Food Bioscience, 34(December 2018). https://doi.org/10.1016/j.fbio.2020.100532
dc.relationKhan, R. S., Grigor, J., Winger, R., & Win, A. (2013). Functional food product development - Opportunities and challenges for food manufacturers. Trends in Food Science and Technology, 30(1), 27–37. https://doi.org/10.1016/j.tifs.2012.11.004
dc.relationKolaček, S., Hojsak, I., Berni Canani, R., Guarino, A., Indrio, F., Orel, R., Pot, B., Shamir, R., Szajewska, H., Vandenplas, Y., Van Goudoever, J., & Weizman, Z. (2017). Commercial Probiotic Products: A Call for Improved Quality Control. A Position Paper by the ESPGHAN Working Group for Probiotics and Prebiotics. Journal of Pediatric Gastroenterology and Nutrition, 65(1), 117–124. https://doi.org/10.1097/MPG.0000000000001603
dc.relationKoutinas, A. A. (2017). Fermented Dairy Products. In Current Developments in Biotechnology and Bioengineering: Food and Beverages Industry. Elsevier B.V. https://doi.org/10.1016/B978-0-444-63666-9.00001-7
dc.relationKun, S., Rezessy-Szabó, J. M., Nguyen, Q. D., & Hoschke, Á. (2008). Changes of microbial population and some components in carrot juice during fermentation with selected Bifidobacterium strains. Process Biochemistry, 43(8), 816–821. https://doi.org/10.1016/j.procbio.2008.03.008
dc.relationLillo-Pérez, S., Guerra-Valle, M., Orellana-Palma, P., & Petzold, G. (2021). Probiotics in fruit and vegetable matrices: Opportunities for nondairy consumers. Lwt, 151(July). https://doi.org/10.1016/j.lwt.2021.112106
dc.relationLu, M., & Wang, N. S. (2016). Spoilage of Milk and Dairy Products. In The Microbiological Quality of Food: Foodborne Spoilers. Elsevier Ltd. https://doi.org/10.1016/B978-0-08-100502-6.00010-8
dc.relationLuciano, W. A., Matte, T. C., Portela, I. A., de Medeiros, L. L., dos Santos Lima, M., Maciel, J. F., de Souza, E. L., Garcia, E. F., & Magnani, M. (2018). Effects of Lactobacillus acidophilus LA-3 on physicochemical and sensory parameters of açaí and mango based smoothies and its survival following simulated gastrointestinal conditions. Food Research International, 114, 159–168. https://doi.org/10.1016/j.foodres.2018.08.005
dc.relationMachado, T. A. D. G., de Oliveira, M. E. G., Campos, M. I. F., de Assis, P. O. A., de Souza, E. L., Madruga, M. S., Pacheco, M. T. B., Pintado, M. M. E., & Queiroga, R. de C. R. do E. (2017). Impact of honey on quality characteristics of goat yogurt containing probiotic Lactobacillus acidophilus. LWT - Food Science and Technology, 80, 221–229. https://doi.org/10.1016/j.lwt.2017.02.013
dc.relationMalakar, S., Paul, S. K., & Pou, K. R. J. (2020). Biotechnological Interventions in Beverage Production. In Biotechnological Progress and Beverage Consumption. Elsevier Inc. https://doi.org/10.1016/B978-0-12-816678-9.00001-1
dc.relationMančušková, T., Medved’ová, A., & Valík, Ľ. (2015). Viability of Lactobacillus acidophilus NCFM Howaru Dophilus during storage at refrigeration temperatures. Acta Chimica Slovaca, 8(1), 17–21. https://doi.org/10.1515/acs-2015-0004
dc.relationMapelli-Brahm, P., Barba, F. J., Remize, F., Garcia, C., Fessard, A., Mousavi Khaneghah, A., Sant’Ana, A. S., Lorenzo, J. M., Montesano, D., & Meléndez-Martínez, A. J. (2020). The impact of fermentation processes on the production, retention and bioavailability of carotenoids: An overview. Trends in Food Science and Technology, 99(December 2019), 389–401. https://doi.org/10.1016/j.tifs.2020.03.013
dc.relationMarsh, A. J., Hill, C., Ross, R. P., & Cotter, P. D. (2014). Fermented beverages with health-promoting potential: Past and future perspectives. Trends in Food Science and Technology, 38(2), 113–124. https://doi.org/10.1016/j.tifs.2014.05.002
dc.relationMehriz Abou El Samh, M., Abou Dawood Sherein, A., & Hebeishy Essam, H. (2013). Properties and antioxident activity of propiotic yoghurt flavored with black carrot, pumpkin and strawberry. International Journal of Dairy Science, 8(2), 48–57. https://doi.org/10.3923/ijds.2013.48.57
dc.relationMgaya-Kilima, B., Remberg, S. F., Chove, B. E., & Wicklund, T. (2015). Physiochemical and antioxidant properties of roselle-mango juice blends; Effects of packaging material, storage temperature and time. Food Science and Nutrition, 3(2), 100–109. https://doi.org/10.1002/fsn3.174
dc.relationMishra, V., Shah, C., Mokashe, N., Chavan, R., Yadav, H., & Prajapati, J. (2015). Probiotics as Potential Antioxidants: A Systematic Review. Journal of Agricultural and Food Chemistry, 63(14), 3615–3626. https://doi.org/10.1021/jf506326t
dc.relationMohanty, D., Misra, S., Mohapatra, S., & Sahu, P. S. (2018). Prebiotics and synbiotics: Recent concepts in nutrition. Food Bioscience, 26, 152–160. https://doi.org/10.1016/j.fbio.2018.10.008
dc.relationMorifuji, M., Ichikawa, S., Kitade, M., Fukasawa, T., Asami, Y., Manabe, Y., & Sugawara, T. (2020). Exopolysaccharides from milk fermented by lactic acid bacteria enhance dietary carotenoid bioavailability in humans in a randomized crossover trial and in rats. American Journal of Clinical Nutrition, 111(4), 903–914. https://doi.org/10.1093/ajcn/nqaa020
dc.relationMousavi, M., Heshmati, A., Garmakhany, A. D., Vahidinia, A., & Taheri, M. (2019). Optimization of the viability of Lactobacillus acidophilus and physico-chemical, textural and sensorial characteristics of flaxseed-enriched stirred probiotic yogurt by using response surface methodology. Lwt, 102(September 2018), 80–88. https://doi.org/10.1016/j.lwt.2018.12.023
dc.relationMuhialdin, B. J., Zawawi, N., Abdull Razis, A. F., Bakar, J., & Zarei, M. (2021). Antiviral activity of fermented foods and their probiotics bacteria towards respiratory and alimentary tracts viruses. Food Control, 127(March), 108140. https://doi.org/10.1016/j.foodcont.2021.108140
dc.relationOliveira, R. P. de S., Perego, P., de Oliveira, M. N., & Converti, A. (2012). Growth, organic acids profile and sugar metabolism of Bifidobacterium lactis in co-culture with Streptococcus thermophilus: The inulin effect. Food Research International, 48(1), 21–27. https://doi.org/10.1016/j.foodres.2012.02.012
dc.relationOlson, D., & Aryana, K. J. (2017). Omega-3 polyunsaturated fatty acids added to yogurt. In Yogurt in Health and Disease Prevention. Elsevier Inc. https://doi.org/10.1016/B978-0-12-805134-4.00007-9
dc.relationPandey, P., Grover, K., Dhillon, T. S., Kaur, A., & Javed, M. (2021). Evaluation of polyphenols enriched dairy products developed by incorporating black carrot (Daucus carota L.) concentrate. Heliyon, 7(5), e06880. https://doi.org/10.1016/j.heliyon.2021.e06880
dc.relationPanse, M. L., & Phalke, S. D. (2019). Omega-3 Beverages. In Value-Added Ingredients and Enrichments of Beverages (Issue 2005). Elsevier Inc. https://doi.org/10.1016/b978-0-12-816687-1.00011-4
dc.relationPathania, S., & Kaur, N. (2022). Utilization of fruits and vegetable by-products for isolation of dietary fibres and its potential application as functional ingredients. Bioactive Carbohydrates and Dietary Fibre, 27(November 2021), 100295. https://doi.org/10.1016/j.bcdf.2021.100295
dc.relationPereira, A. P., Oliveira, J. M., Mendes-Ferreira, A., Estevinho, L. M., & Mendes-Faia, A. (2016). Mead and Other Fermented Beverages. In Current Developments in Biotechnology and Bioengineering: Food and Beverages Industry. Elsevier B.V. https://doi.org/10.1016/B978-0-444-63666-9.00014-5
dc.relationPerricone, M., Corbo, M. R., Sinigaglia, M., Speranza, B., & Bevilacqua, A. (2014). Viability of Lactobacillus reuteri in fruit juices. Journal of Functional Foods, 10, 421–426. https://doi.org/10.1016/j.jff.2014.07.020
dc.relationPokusaeva, K., Fitzgerald, G. F., & Van Sinderen, D. (2011). Carbohydrate metabolism in Bifidobacteria. Genes and Nutrition, 6(3), 285–306. https://doi.org/10.1007/s12263-010-0206-6
dc.relationPop, C. R., Topan, C., Rotar, A. M., Semeniuc, C., & Salanţă, L. (2015). Evaluation the Sensory and Probiotics Properties of the Yogurt Supplemented with Carrot Juice. Bulletin of University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca. Food Science and Technology, 72(2), 5–6. https://doi.org/10.15835/buasvmcn-fst:11533
dc.relationPorto, M. C. W., Kuniyoshi, T. M., Azevedo, P. O. S., Vitolo, M., & Oliveira, R. P. S. (2017). Pediococcus spp.: An important genus of lactic acid bacteria and pediocin producers. Biotechnology Advances, 35(3), 361–374. https://doi.org/10.1016/j.biotechadv.2017.03.004
dc.relationPrabhurajeshwar, C., & Chandrakanth, R. K. (2017). Probiotic potential of Lactobacilli with antagonistic activity against pathogenic strains: An in vitro validation for the production of inhibitory substances. Biomedical Journal, 40(5), 270–283. https://doi.org/10.1016/j.bj.2017.06.008
dc.relationPushpadass, H. A., Emerald, F. M. E., Balasubramanyam, B. V., & Patel, S. S. (2019). Rheological Properties of Milk-Based Beverages. In Milk-Based Beverages. Elsevier Inc. https://doi.org/10.1016/b978-0-12-815504-2.00011-6
dc.relationQuigley, E. M. M. (2019). Prebiotics and Probiotics in Digestive Health. Clinical Gastroenterology and Hepatology, 17(2), 333–344. https://doi.org/10.1016/j.cgh.2018.09.028
dc.relationRabiu, B., Jay, A., Gibson, G., & Rastall, R. A. (2001). Synthesis and fermentation properties of novel galacto-oligosaccharides by beta-galactosidases from Bifidobacterium species. Applied and Environmental Microbiology, 67, 2526–2530. https://doi.org/10.1017/S002211207300042X
dc.relationRaccach, M. (2014). Pediococcus. Encyclopedia of Food Microbiology: Second Edition, 3, 1–5. https://doi.org/10.1016/B978-0-12-384730-0.00247-0
dc.relationRiaz Rajoka, M. S., Shi, J., Mehwish, H. M., Zhu, J., Li, Q., Shao, D., Huang, Q., & Yang, H. (2017). Interaction between diet composition and gut microbiota and its impact on gastrointestinal tract health. Food Science and Human Wellness, 6(3), 121–130. https://doi.org/10.1016/j.fshw.2017.07.003
dc.relationSalehi, F. (2021). Rheological and physicochemical properties of vegetable juices and concentrates: A review. Journal of Food Processing and Preservation, 45(4), 1–13. https://doi.org/10.1111/jfpp.15326
dc.relationSamoggia, A. (2016). Healthy Food: Determinants of Price Knowledge of Functional Dairy Products. Journal of Food Products Marketing, 22(8), 905–929. https://doi.org/10.1080/10454446.2015.1072867
dc.relationŠeregelj, V., Pezo, L., Šovljanski, O., Lević, S., Nedović, V., Markov, S., Tomić, A., Čanadanović-Brunet, J., Vulić, J., Šaponjac, V. T., & Ćetković, G. (2021). New concept of fortified yogurt formulation with encapsulated carrot waste extract. Lwt, 138(December 2020). https://doi.org/10.1016/j.lwt.2020.110732
dc.relationSharma, K. D., Karki, S., Thakur, N. S., & Attri, S. (2012). Chemical composition, functional properties and processing of carrot-A review. Journal of Food Science and Technology, 49(1), 22–32. https://doi.org/10.1007/s13197-011-0310-7
dc.relationShewale, R. N., Sawale, P. D., Khedkar, C. D., & Singh, A. (2014). Selection criteria for probiotics: A review Department of Dairy Microbiology College of Dairy Technology , Pusad , India ; International Journal of Probiotics and Prebiotics, 9(1), 2014.
dc.relationSims, I. M., Ryan, J. L. J., & Kim, S. H. (2014). Invitro fermentation of prebiotic oligosaccharides by Bifidobacterium lactis HN019 and Lactobacillus spp. Anaerobe, 25, 11–17. https://doi.org/10.1016/j.anaerobe.2013.11.001
dc.relationSivieri, K., Freire, F. C., Lopes, N. P., Shiraishi, C. T. D., Pires, A. C. M. S., Lima, A. C. D., Zavarizi, A. C. M., Sgarbosa, L., & Bianchi, F. (2017). Synbiotic yogurts and the elderly. In Yogurt in Health and Disease Prevention. Elsevier Inc. https://doi.org/10.1016/B978-0-12-805134-4.00014-6
dc.relationSogi, D. S., Siddiq, M., Greiby, I., & Dolan, K. D. (2013). Total phenolics, antioxidant activity, and functional properties of “Tommy Atkins” mango peel and kernel as affected by drying methods. Food Chemistry, 141(3), 2649–2655. https://doi.org/10.1016/j.foodchem.2013.05.053
dc.relationSoria, A. C., Sanz, M. L., & Villamiel, M. (2009). Determination of minor carbohydrates in carrot (Daucus carota L.) by GC-MS. Food Chemistry, 114(2), 758–762. https://doi.org/10.1016/j.foodchem.2008.10.060
dc.relationSudheer Kumar, Y., Varakumar, S., & Reddy, O. V. S. (2012). Evaluation of antioxidant and sensory properties of mango (Mangifera indica L.) wine. CYTA - Journal of Food, 10(1), 12–20. https://doi.org/10.1080/19476337.2010.530693
dc.relationSudibyo, A. (2018). Designing Functional Beverages Process : Highlighting Lessons Learned From Research and Development. Jurnal Industri Hasil Perkebunan, 13(1), 19–36. https://doi.org/10.33104/jihp.v13i1.3698
dc.relationTan, J., McKenzie, C., Vuillermin, P. J., Goverse, G., Vinuesa, C. G., Mebius, R. E., Macia, L., & Mackay, C. R. (2016). Dietary Fiber and Bacterial SCFA Enhance Oral Tolerance and Protect against Food Allergy through Diverse Cellular Pathways. Cell Reports, 15(12), 2809–2824. https://doi.org/10.1016/j.celrep.2016.05.047
dc.relationTarrega, A., Marcano, J., & Fiszman, S. (2016). Yogurt viscosity and fruit pieces affect satiating capacity expectations. Food Research International, 89, 574–581. https://doi.org/10.1016/j.foodres.2016.09.011
dc.relationTesfaye, W., Suarez-Lepe, J. A., Loira, I., Palomero, F., & Morata, A. (2019). Dairy and Nondairy-Based Beverages as a Vehicle for Probiotics, Prebiotics, and Symbiotics: Alternatives to Health Versus Disease Binomial Approach Through Food. In Milk-Based Beverages. Elsevier Inc. https://doi.org/10.1016/b978-0-12-815504-2.00014-1
dc.relationTheis, S. (2018). Authorised EU health claim for chicory inulin. In Foods, Nutrients and Food Ingredients with Authorised EU Health Claims (Vol. 3). Elsevier Ltd. https://doi.org/10.1016/B978-0-08-100922-2.00010-3
dc.relationTurkmen, N., Akal, C., & Özer, B. (2019). Probiotic dairy-based beverages: A review. Journal of Functional Foods, 53(August 2018), 62–75. https://doi.org/10.1016/j.jff.2018.12.004
dc.relationVénica, C. I., Spotti, M. J., Pavón, Y. L., Molli, J. S., & Perotti, M. C. (2020). Influence of carrot fibre powder addition on rheological, microstructure and sensory characteristics of stirred-type yogurt. International Journal of Food Science and Technology, 55(5), 1916–1923. https://doi.org/10.1111/ijfs.14415
dc.relationVidhyasagar, V., & Jeevaratnam, K. (2013). Evaluation of Pediococcus pentosaceus strains isolated from Idly batter for probiotic properties in vitro. Journal of Functional Foods, 5(1), 235–243. https://doi.org/10.1016/j.jff.2012.10.012
dc.relationVinderola, G., Burns, P., & Reinheimer, J. (2017). Probiotics in Nondairy Products. In Vegetarian and Plant-Based Diets in Health and Disease Prevention (Issue 3). Elsevier. https://doi.org/10.1016/B978-0-12-803968-7.00044-7
dc.relationWalker, C., & Thomas, M. G. (2019). The evolution of lactose digestion. In Lactose. Elsevier Inc. https://doi.org/10.1016/b978-0-12-811720-0.00001-5
dc.relationWallace, T. C., & Giusti, M. M. (2008). Determination of color, pigment, and phenolic stability in yogurt systems colored with nonacylated anthocyanins from Berberis boliviana L. as compared to other natural/synthetic colorants. Journal of Food Science, 73(4). https://doi.org/10.1111/j.1750-3841.2008.00706.x
dc.relationYu, S., Zhou, C., Zhang, T., Jiang, B., & Mu, W. (2015). Short communication: 3-Phenyllactic acid production in milk by Pediococcus pentosaceus SK25 during laboratory fermentation process. Journal of Dairy Science, 98(2), 813–817. https://doi.org/10.3168/jds.2014-8645
dc.relationYusuf, E., Wojdyło, A., Oszmiański, J., & Nowicka, P. (2021). Nutritional, phytochemical characteristics and in vitro effect on α-amylase, α-glucosidase, lipase, and cholinesterase activities of 12 coloured carrot varieties. Foods, 10(4). https://doi.org/10.3390/foods10040808
dc.relationZuluaga-Domínguez, C. M., Nieto-Veloza, A., & Quicazán-de-Cuenca, M. (2017). Classification of Colombian honeys by electronic nose and physical-chemical parameters, using neural networks and genetic algorithms. Journal of Apicultural Research, 57(1), 145–152. https://doi.org/10.1080/00218839.2017.1339521
dc.rightsAtribución-NoComercial-SinDerivadas 4.0 Internacional
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.titleEvaluación de un proceso para elaboración de una bebida láctea utilizando un medio de cultivo vegetal fuente de probióticos, antioxidantes y fibra
dc.typeTrabajo de grado - Maestría


Este ítem pertenece a la siguiente institución