es | en | pt | fr
    • Presentación
    • Países
    • Instituciones
    • Participa
        JavaScript is disabled for your browser. Some features of this site may not work without it.
        Ver ítem 
        •   Inicio
        • Colombia
        • Universidades
        • Universidad El Bosque (Colombia)
        • Ver ítem
        •   Inicio
        • Colombia
        • Universidades
        • Universidad El Bosque (Colombia)
        • Ver ítem

        Método de apoyo para el diagnóstico en imágenes radiológicas de neumonía pediátrica mediante técnicas de inteligencia artificial

        Fecha
        2022
        Registro en:
        http://hdl.handle.net/20.500.12495/9514
        instname: Universidad El Bosque
        reponame: Repositorio Institucional Universidad El Bosque
        https://repositorio.unbosque.edu.co
        https://repositorioslatinoamericanos.uchile.cl/handle/2250/6645085
        Autor
        Bustos Jiménez, Jeysshon Javier
        Institución
        • Universidad El Bosque (Colombia)
        Resumen
        Los modelos de IA en aprendizaje de imágenes médicas diagnosticas, se están convirtiendo en herramientas de apoyo al personal médico para garantizar un óptimo diagnóstico. Sin embargo, con una red neuronal clásica se crea una clasificación al poder abstraer patrones jerárquicamente la imagen medica original, estos patrones son características de la posición y orientación del objeto, y esta falta de información espacial limita la precisión de la clasificación de imágenes médicas radiológicas pediátricas. Por lo tanto, se plantea el desarrollo de una red neuronal que ayude al personal médico al diagnóstico de Neumonía pediátrica. Se propone una IA de aprendizaje profundo usando redes neuronales convolucionales para detectar y diagnosticar neumonía pediátrica, este método se utiliza a través de un filtro que se aplica a la imagen en escala de grises la cual permite extraer ciertas características y patrones, de dichas imágenes radiológicas para la detección de neumonía, usamos los parámetros del modelo aprendidos a través del Data set “Labeled Optical Coherence Tomography (OCT) and Chest X-Ray Images for Classification” en conjuntos de datos a gran escala, para inicializar el modelo se usó través del aprendizaje por transferencia. El método propuesto se ha evaluado para extraer características de textura asociadas con neumonía pediátrica. Los resultados experimentales del conjunto del Data set obtienen una precisión de 92%. Con este método se obtiene una herramienta para la clasificación de imágenes radiológicas y rendimiento que permite ayudar al personal médico a garantizar una óptima atención pediátrica en casos de neumonía. Además, de ser una herramienta útil de no contar con un especialista. Generando, una base para futuras investigaciones, manteniendo un modelo cíclico que dé lugar a la optimización del enfoque y así aplicarlo a la medicina.
        Materias
        Deep learning.
        Aprendizaje profundo
        Aprendizaje de maquina
        Neumonía
        Pediatrico
        Redes neuronales convolucionales

        Mostrar el registro completo del ítem


        Red de Repositorios Latinoamericanos
        + de 8.000.000 publicaciones disponibles
        500 instituciones participantes
        Dirección de Servicios de Información y Bibliotecas (SISIB)
        Universidad de Chile
        Ingreso Administradores
        Colecciones destacadas
        • Tesis latinoamericanas
        • Tesis argentinas
        • Tesis chilenas
        • Tesis peruanas
        Nuevas incorporaciones
        • Argentina
        • Brasil
        • Colombia
        • México
        Dirección de Servicios de Información y Bibliotecas (SISIB)
        Universidad de Chile
        Red de Repositorios Latinoamericanos | 2006-2018
         

        EXPLORAR POR

        Instituciones
        Fecha2011 - 20202001 - 20101951 - 20001901 - 19501800 - 1900

        Explorar en Red de Repositorios

        Países >
        Tipo de documento >
        Fecha de publicación >
        Instituciones >

        Red de Repositorios Latinoamericanos
        + de 8.000.000 publicaciones disponibles
        500 instituciones participantes
        Dirección de Servicios de Información y Bibliotecas (SISIB)
        Universidad de Chile
        Ingreso Administradores
        Colecciones destacadas
        • Tesis latinoamericanas
        • Tesis argentinas
        • Tesis chilenas
        • Tesis peruanas
        Nuevas incorporaciones
        • Argentina
        • Brasil
        • Colombia
        • México
        Dirección de Servicios de Información y Bibliotecas (SISIB)
        Universidad de Chile
        Red de Repositorios Latinoamericanos | 2006-2018