dc.creatorHunziker, Stefan
dc.creatorBrönnimann, Stefan
dc.creatorCalle, J.
dc.creatorMoreno, Isabel
dc.creatorAndrade, Marcos
dc.creatorTicona, Laura
dc.creatorHuerta, Adrian
dc.creatorLavado-Casimiro, W.
dc.date.accessioned2019-07-27T20:52:11Z
dc.date.accessioned2023-05-30T21:27:58Z
dc.date.available2019-07-27T20:52:11Z
dc.date.available2023-05-30T21:27:58Z
dc.date.created2019-07-27T20:52:11Z
dc.date.issued2018-01
dc.identifierhttp://repositorio.senamhi.gob.pe/handle/20.500.12542/92
dc.identifier0000 0001 0746 0446
dc.identifierhttps://doi.org/10.5194/cp-14-1-2018
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/6454441
dc.description.abstractSystematic data quality issues may occur at various stages of the data generation process. They may affect large fractions of observational datasets and remain largely undetected with standard data quality control. This study investigates the effects of such undetected data quality issues on the results of climatological analyses. For this purpose, we quality controlled daily observations of manned weather stations from the Central Andean area with a standard and an enhanced approach. The climate variables analysed are minimum and maximum temperature and precipitation. About 40ĝ% of the observations are inappropriate for the calculation of monthly temperature means and precipitation sums due to data quality issues. These quality problems undetected with the standard quality control approach strongly affect climatological analyses, since they reduce the correlation coefficients of station pairs, deteriorate the performance of data homogenization methods, increase the spread of individual station trends, and significantly bias regional temperature trends. Our findings indicate that undetected data quality issues are included in important and frequently used observational datasets and hence may affect a high number of climatological studies. It is of utmost importance to apply comprehensive and adequate data quality control approaches on manned weather station records in order to avoid biased results and large uncertainties.
dc.languageeng
dc.publisherCopernicus GmbH
dc.relationurn:issn:1814-9324
dc.rightshttp://creativecommons.org/licenses/by-nc-sa/3.0/us/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightsAttribution-NonCommercial-ShareAlike 3.0 United States
dc.sourceServicio Nacional de Meteorología e Hidrología del Perú
dc.sourceRepositorio Institucional - SENAMHI
dc.source14
dc.source1
dc.source1
dc.source20
dc.sourceClimate of the Past
dc.subjectClimatology
dc.subjectData quality
dc.subjectData set
dc.subjectNumerical method
dc.subjectQuality control
dc.subjectTemperature gradient
dc.subjectTrend analysis
dc.subjectUncertainty analysis
dc.subjectWeather station
dc.titleEffects of undetected data quality issues on climatological analyses
dc.typeinfo:eu-repo/semantics/article


Este ítem pertenece a la siguiente institución