dc.creatorMarian, Max
dc.creatorMursak, Jonas
dc.creatorBartz, Marcel
dc.creatorProfito, Francisco J.
dc.creatorRosenkranz, Andreas
dc.creatorWartzack, Sandro
dc.date.accessioned2022-08-18T16:40:06Z
dc.date.available2022-08-18T16:40:06Z
dc.date.created2022-08-18T16:40:06Z
dc.date.issued2022
dc.identifierFriction (2022)
dc.identifier10.1007/s40544-022-0641-6
dc.identifierhttps://doi.org/10.1007/s40544-022-0641-6
dc.identifierhttps://repositorio.uc.cl/handle/11534/64674
dc.description.abstractNon-dimensional similarity groups and analytically solvable proximity equations can be used to estimate integral fluid film parameters of elastohydrodynamically lubricated (EHL) contacts. In this contribution, we demonstrate that machine learning (ML) and artificial intelligence (AI) approaches (support vector machines, Gaussian process regressions, and artificial neural networks) can predict relevant film parameters more efficiently and with higher accuracy and flexibility compared to sophisticated EHL simulations and analytically solvable proximity equations, respectively. For this purpose, we use data from EHL simulations based upon the full-system finite element (FE) solution and a Latin hypercube sampling. We verify that the original input data are required to train ML approaches to achieve coefficients of determination above 0.99. It is revealed that the architecture of artificial neural networks (neurons per layer and number of hidden layers) and activation functions influence the prediction accuracy. The impact of the number of training data is exemplified, and recommendations for a minimum database size are given. We ultimately demonstrate that artificial neural networks can predict the locally-resolved film thickness values over the contact domain 25-times faster than FE-based EHL simulations (R² values above 0.999). We assume that this will boost the use of ML approaches to predict EHL parameters and traction losses in multibody system dynamics simulations.
dc.languageen
dc.rightsThe Author(s)
dc.rightsacceso abierto
dc.subjectMachine learning
dc.subjectElastohydrodynamic
dc.subjectLubrication
dc.subjectFilm thickness
dc.subjectSupport vector machine
dc.subjectGaussian process regression
dc.subjectArtificial neural network
dc.titlePredicting EHL film thickness parameters by machine learning approaches
dc.typeartículo


Este ítem pertenece a la siguiente institución