tesis de maestría
Detección de objetos peligrosos en equipaje usando técnicas de deep learning en imágenes de rayos x
Fecha
2020Registro en:
10.7764/tesisUC/ING/65150
Autor
Saavedra Morales, Daniel Alejandro
Institución
Resumen
En el ámbito de la seguridad un método no invasivo cada vez más utilizado, es el análisis de objetos mediante imágenes de rayos X. Particularmente en los aeropuertos, este procedimiento es parte del protocolo a la hora de detectar objetos peligrosos en el equipaje de los pasajeros. Lamentablemente, dicha inspección es realizada por inspectores humanos, los cuales logran detectar alrededor del 80% − 90%, en condiciones adecuadas. Es por esto que la utilización de detectores automáticos puede ser de gran ayuda a la hora de combatir una situación de riesgo. En este trabajo proponemos una metodología para la síntesis de imágenes en rayos X para el problema de detección en objetos peligrosos, utilizando el método de superposición y redes neuronales antagónicas. Dicho método es escalable a diversa índole de objetos peligrosos, permitiendo generalizar nuestra propuesta al poseer una base de datos mas compleja. Esto proporcionará una base de datos con la suficiente información para entrenar correctamente los recientes algoritmos de detección basados en aprendizaje profundo como los son: Faster-RCNN, YOLO, SSD y RetinaNet. Empleando esta metodología obtuvimos diversos detectores para 4 objetos peligrosos: cuchillos, hojas de afeitar, pistolas y shurikens. Estos son evaluados en un conjunto de imágenes independientes, utilizando la métrica ”Promedio de Precisión media”, mAP (del ingles´ mean Average Precision), junto con analizar el tiempo de predicción por imagen. Los mejores resultados promedios fueron 80% obtenidos por el modelo YOLOv3. Desglosando dichos resultados tenemos: pistolas 96.3%, cuchillos 76.2%, hojas de afeitar 86.9% y shurikens 93.7% de un total de 600 imágenes de prueba.