dc.contributorSolano Palma, Manuel; supervisor de grado
dc.contributorSánchez Vizuet, Tonatiuh; supervisor de grado
dc.creatorHenríquez Novoa, Esteban Ignacio
dc.date.accessioned2022-12-21T09:02:09Z
dc.date.available2022-12-21T09:02:09Z
dc.date.created2022-12-21T09:02:09Z
dc.date.issued2022
dc.identifierhttp://repositorio.udec.cl/jspui/handle/11594/10496
dc.description.abstractShape optimization seeks to optimize the shape of a region where certain partial differential equation is posed such that a functional of its solution is minimized/maximized. In this thesis we give an introduction to shape optimization through a model problem, introducing the concepts of shape derivative for a function and perturbation of the shape for a functional, we deduce the optimality conditions for the problem, and then we will present a numerical method to seek the solution via a hybridizable discontinuous Galerkin methods on curved domains. Subsequently, we develop a rigorous treatment to analyze the well-posedness of the problems that arise from the optimality conditions, and provide an a priori error analysis for each scheme.
dc.languageeng
dc.publisherUniversidad de Concepción.
dc.publisherFacultad de Ciencias Físicas y Matemáticas
dc.publisherDepartamento de Ingeniería Matemática.
dc.rightshttps://creativecommons.org/licenses/by-nc-nd/4.0/deed.es
dc.rightsCreative Commoms CC BY NC ND 4.0 internacional (Atribución-NoComercial-SinDerivadas 4.0 Internacional)
dc.subjectEcuaciones Diferenciales
dc.subjectMétodos de Galerkin
dc.subjectPolinomios
dc.titleAn unfitted hybridizable discontinuous galerkin method in shape optimization.
dc.typeTesis


Este ítem pertenece a la siguiente institución