info:eu-repo/semantics/article
Reducción del grado en aplicaciones de Keller
Autor
Fernández Sánchez, Percy
Rabanal, Roland
Institución
Resumen
A las aplicaciones polinomiales con el determinante de su matriz jacobiana igual a 1 se las llama aplicaciones de Keller. Segun la conjetura jacobiana de Keller, cada aplicacion de Keller es inyectiva. Tal conjetura es verdadera para las aplicaciones polinomiales de grado menor o igual a dos. En el presente trabajo tambien se muestra que el caso general se reduce a estudiar la inyectividad de aplicaciones de la forma z 7! z +H(z); donde las componentes no nulas de H son polinomios homogéneos de grado tres y cada matriz Jacobiana DH(z) es nilpotente. The polynomial maps whose Jacobian determinant is equal to 1 are called Keller maps. The Keller Jacobian conjecture claims that every Kellermap is injective. This conjecture is true for polynomials whose degree is less than or equal to two. In this paper we prove that the general casereduces to the study of the injectivity of maps of the form z 7! z+H(z),where the nonzero components of H are homogeneous polynomials of degree three, and every Jacobian matrix DH(z) is nilpotent.