dc.contributorScopus
dc.creatorArgyros, Ioannis K
dc.creatorEzquerro, J A
dc.creatorHernández-Verón, M A
dc.creatorMagreñán, Á. Alberto (1)
dc.date.accessioned2019-01-25T09:02:47Z
dc.date.accessioned2023-03-07T19:20:00Z
dc.date.available2019-01-25T09:02:47Z
dc.date.available2023-03-07T19:20:00Z
dc.date.created2019-01-25T09:02:47Z
dc.identifier1879-1778
dc.identifierhttps://reunir.unir.net/handle/123456789/7696
dc.identifierhttps://doi.org/10.1016/j.cam.2018.01.024
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/5902289
dc.description.abstractIn this paper, we propose a center Lipschitz condition for the second Frechet derivative together with the use of restricted domains in order to improve the domain of starting points for Newton's method. In addition, we compare the new result with an older one and see that the former improves the latter. (C) 2018 Elsevier B.V. All rights reserved.
dc.languageeng
dc.publisherJournal of Computational and Applied Mathematics
dc.relation;vol. 340
dc.relationhttps://www.sciencedirect.com/science/article/pii/S0377042718300530?via%3Dihub
dc.rightsrestrictedAccess
dc.subjectNewton's method
dc.subjectrestricted domain
dc.subjectmajorizing sequence
dc.subjectsemilocal convergence
dc.subjecterror estimates
dc.subjectintegral equation
dc.subjectJCR
dc.titleExtending the domain of starting points for Newton's method under conditions on the second derivative
dc.typeArticulo Revista Indexada


Este ítem pertenece a la siguiente institución