dc.creatorShah, Dhairya
dc.creatorSahni, Manoj
dc.creatorSahni, Ritu
dc.creatorLeón Castro, Ernesto
dc.creatorOlazabal Lugo, Maricruz
dc.date2022-10-13T14:11:04Z
dc.date2022-10-13T14:11:04Z
dc.date2022
dc.identifierShah, D., Sahni, M., Sahni, R., León-Castro, E., & Olazabal-Lugo, M. (2022). Series of floor and ceiling Function—Part I: Partial summations. Mathematics, 10(7) doi:10.3390/math10071178
dc.identifier2227-7390
dc.identifierhttp://repositoriodigital.ucsc.cl/handle/25022009/2961
dc.descriptionArtículo de publicación SCOPUS - WOS
dc.descriptionIn this paper, we develop two new theorems relating to the series of floor and ceiling func- tions. We then use these two theorems to develop more than forty distinct novel results. Furthermore, we provide specific cases for the theorems and corollaries which show that our results constitute a generalisation of the currently available results such as the summation of first n Fibonacci numbers and Pascal’s identity. Finally, we provide three miscellaneous examples to showcase the vast scope of our developed theorems.
dc.languageen
dc.publisherMathematics
dc.sourcefile:///D:/Downloads/mathematics-10-01178-v2-1.pdf
dc.subjectCeiling function;
dc.subjectFloor function
dc.subjectFaulhaber’s formula
dc.subjectFibonacci numbers
dc.subjectGeometric series
dc.subjectPartial summations
dc.titleSeries of Floor and Ceiling Function-Part I : Partial Summations
dc.typeArticle


Este ítem pertenece a la siguiente institución