dc.creatorMartinez Ruiz, Alba
dc.creatorMontanola Sales, Cristina
dc.date2020-08-26T23:19:56Z
dc.date2020-08-26T23:19:56Z
dc.date2019-04
dc.identifierHeliyon, Volume 5, Issue 4, April 2019,
dc.identifierhttp://repositoriodigital.ucsc.cl/handle/25022009/2068
dc.descriptionArtículo de publicación WOS
dc.descriptionPartial Least Squares (PLS) Mode B is a multi-block method and a tightly coupled algorithm for estimating structural equation models (SEMs). Describing key aspects of parallel computing, we approach the parallelization of the PLS Mode B algorithm to operate on large distributed data. We show the scalability and performance of the algorithm at a very fine-grained level thanks to the versatility of pbdR, a R-project library for parallel computing. We vary several factors under different data distribution schemes in a supercomputing environment. Shorter elapsed times are obtained for the square-blocking factor 16×16 using a grid of processors as square as possible and non-square blocking factors 1000×4 and 10000×4 using an one-column grid of processors. Depending on the configuration, distributing data in a larger number of cores allows reaching speedups of up to 121 over the CPU implementation. Moreover, we show that SEMs can be estimated with big data sets using current state-of-the-art algorithms for multi-block data analysis.
dc.languageen
dc.publisherHeliyon
dc.sourcehttps://doi.org/10.1016/j.heliyon.2019.e01451
dc.subjectComputer science
dc.subjectComputational mathematics
dc.titleBig data in multi-block data analysis: An approach to parallelizing Partial Least Squares Mode B algorithm
dc.typeArticle


Este ítem pertenece a la siguiente institución