Article
Damage assessment of squat, thin and lightly-reinforced concrete walls by the Park & Ang damage index
Evaluación de daños de paredes de hormigón en cuclillas, delgadas y ligeramente reforzadas por el índice de daños Park & Ang
Registro en:
Journal of Building Engineering 26 (2019) 100921
2352-7102
Autor
Carrillo, Julian
Oyarzo-Vera, Claudio
Blandón, Carlos
Resumen
Damage progression indexes are widely used to evaluate the performance of structural elements in buildings and
bridges subjected to seismic actions. Although the Park & Ang damage index is currently implemented in several
computational tools, the index has not been calibrated for squat and thin reinforced concrete (RC) elements
controlled by shear deformations. It has been observed that the equations originally proposed for the Park & Ang
damage index are unsuited for these types of structural elements, which are characterized by a failure mode
dominated by shear instead of flexural deformations. The index was evaluated in this study for squat, thin and
lightly-reinforced concrete walls using experimental data from a program comprising monotonic and reversedcyclic load testing of 25 RC squat cantilever walls. The experimental program included walls, with and
without openings, having height-to-length ratios equal to 0.5, 1.0 and 2.0. Full-scale wall thickness and clear
height were 100 mm and 2.4 m, respectively. The specimens were built using three different types of concrete
(normal-weight, light-weight and self-consolidating) with nominal compressive strength of 15 MPa. A novel
formulation for the parameter β included in the Park & Ang damage index was proposed in this study using key
variables of the wall specimens such as web reinforcement ratio and cumulative ductility. Comparison between
the computed damage index and crack pattern evolution observed in wall specimens at different damage states
demonstrated the ability of the model to numerically assess the damage of the wall specimens. Hence, this new
formulation proposed for parameter β leads to a better estimation of damage for this particular type of elements
when applying the broadly used Park & Ang damage index.