dc.creatorBarrios Faúndez, Tomás
dc.creatorGatica, Gabriel N.
dc.date2015-11-27T15:32:11Z
dc.date2015-11-27T15:32:11Z
dc.date2007
dc.identifierJournal of Computational and Applied Mathematics 200
dc.identifier0377-0427
dc.identifierhttp://repositoriodigital.ucsc.cl/handle/25022009/597
dc.descriptionArtículo de publicación ISI
dc.descriptionIn this paper, we provide a priori and a posteriori error analyses of an augmented mixed finite element method with Lagrange multipliers applied to elliptic equations in divergence form with mixed boundary conditions. The augmented scheme is obtained by including the Galerkin least-squares terms arising from the constitutive and equilibrium equations. We use the classical Babuška–Brezzi theory to show that the resulting dual-mixed variational formulation and its Galerkin scheme defined with Raviart–Thomas spaces are well posed, and also to derive the corresponding a priori error estimates and rates of convergence. Then, we develop a reliable and efficient residual-based a posteriori error estimate and a reliable and quasi-efficient Ritz projection-based one, as well. Finally, several numerical results illustrating the performance of the augmented scheme and the associated adaptive algorithms are reported
dc.languageen
dc.publisherElsevier
dc.rightsAtribucion-Nocomercial-SinDerivadas 3.0 Chile
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/3.0/cl/
dc.sourcehttp://goo.gl/DseKcf
dc.subjectMixed finite elements
dc.subjectRaviart–Thomas spaces
dc.subjectA posteriori error estimates
dc.titleAn augmented mixed finite element method with Lagrange multipliers: A priori and a posteriori error analyses
dc.typeArticle


Este ítem pertenece a la siguiente institución