Chile | Article
dc.creatorCornejo Zúñiga, Oscar
dc.date2015-11-06T17:41:17Z
dc.date2015-11-06T17:41:17Z
dc.date2005
dc.identifier9783540324409
dc.identifierhttp://repositoriodigital.ucsc.cl/handle/25022009/248
dc.descriptionIn this paper we study an algorithm to find critical points of a lower semicontinuous nonconvex function. We use the Moreau regularization for a special type of functions belonging to the class of prox-regular functions which have very interesting algorithmic properties. We show that it is possible to generate an algorithm in order to obtain a critical point using the theory developed for the composite functions and also the results for the solutions of nonsmooth vectorial equations. We prove the convergence of the algorithm and some estimations of the convergence speed.
dc.languageen
dc.publisherAlgorithmic Applications in Management
dc.rightsAtribucion-Nocomercial-SinDerivadas 3.0 Chile
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/3.0/cl/
dc.sourcehttp://goo.gl/p7jXp3
dc.subjectVariational Analysis
dc.subjectMoreau Approximation
dc.subjectProximal Point Algorithm
dc.subjectProx-Regularity
dc.subjectNonsmooth Equations
dc.titleAn algorithm for nonconvex lower semicontinuous optimization problems
dc.typeArticle


Este ítem pertenece a la siguiente institución