dc.creatorUribe, Marco
dc.date2015-08-21T21:49:17Z
dc.date2015-08-21T21:49:17Z
dc.date2006
dc.identifierJournal of Dynamical and Control Systems 12 (1)
dc.identifier1079-2724
dc.identifierhttp://repositoriodigital.ucsc.cl/handle/25022009/89
dc.descriptionArtículo de publicación ISI
dc.descriptionIn this paper, we consider a small polynomial perturbation of the Hamiltonian vector field with the Hamiltonian F(x, y) = x[y2 − (x − 3)2] having a center bounded by a triangle. The main result of this work is that the principal Poincar´e–Pontryagin function associated with such a perturbation and with the family of ovals surrounding the center belongs to the C[t, 1/t] module generated by Abelian integrals I0(t) and I2(t) and by I∗(t), where I∗(t) is not an Abelian integral. We show that, in general, the principal Poincar´e– Pontryagin function of order two of a polynomial perturbation of the degree at least five is not an Abelian integral
dc.languageen
dc.publisherSpringer
dc.rightsAtribucion-Nocomercial-SinDerivadas 3.0 Chile
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/3.0/cl/
dc.subjectAbelian integrals
dc.subjectPoincaré–Pontryagin functions
dc.subjectasymptotic development.
dc.titlePrincipal poincaré–pontryagin function of polynomial perturbations of the hamiltonian triangle
dc.typeArticle


Este ítem pertenece a la siguiente institución