Artículos de revistas
A class of Sobolev orthogonal polynomials on the unit circle and associated continuous dual Hahn polynomials: Bounds, asymptotics and zeros
Fecha
2021-08-01Registro en:
Journal of Approximation Theory, v. 268.
1096-0430
0021-9045
10.1016/j.jat.2021.105604
2-s2.0-85108259358
Autor
Universidade Estadual Paulista (UNESP)
Institución
Resumen
This paper deals with orthogonal polynomials and associated connection coefficients with respect to a class of Sobolev inner products on the unit circle. Under certain conditions on the parameters in the inner product it is shown that the connection coefficients are related to a subfamily of the continuous dual Hahn polynomials. Properties regarding bounds and asymptotics are also established with respect to these parameters. Criteria for knowing when the zeros of the (Sobolev) orthogonal polynomials and also the zeros of their derivatives stay within the unit disk have also been addressed. By numerical experiments some further information on the parameters is also found so that the zeros remain within the unit disk.
Ítems relacionados
Mostrando ítems relacionados por Título, autor o materia.
-
ZEROS OF CLASSICAL ORTHOGONAL POLYNOMIALS OF A DISCRETE VARIABLE
Area, I; Dimitrov, DK; Godoy, E; Paschoa, VG -
Zeros of classical orthogonal polynomials of a discrete variable
Area, Ivan; Dimitrov, Dimitar K.; Godoy, Eduardo; Paschoa, Vanessa G. -
Zeros of classical orthogonal polynomials of a discrete variable
Univ Vigo; Universidade Estadual Paulista (Unesp); Universidade Estadual de Campinas (UNICAMP) (Amer Mathematical Soc, 2013-04-01)In this paper we obtain sharp bounds for the zeros of classical orthogonal polynomials of a discrete variable, considered as functions of a parameter, by using a theorem of A. Markov and the so-called Hellmann-Feynman ...