Artículos de revistas
Results of the deepest all-sky survey for continuous gravitational waves on LIGO S6 data running on the Einstein@Home volunteer distributed computing project
Fecha
2016-11-18Registro en:
Physical Review D, v. 94, n. 10, 2016.
2470-0029
2470-0010
10.1103/PhysRevD.94.102002
2-s2.0-84999026109
Autor
California Institute of Technology
Louisiana State University
American University
Università di Salerno
Complesso Universitario di Monte S. Angelo
University of Florida
LIGO Livingston Observatory
CNRS/IN2P3
University of Sannio at Benevento
Max-Planck-Institut für Gravitationsphysik
Science Park
Massachusetts Institute of Technology
Instituto Nacional de Pesquisas Espaciais
Gran Sasso Science Institute
Sezione di Roma Tor Vergata
Inter-University Centre for Astronomy and Astrophysics
Tata Institute of Fundamental Research
University of Wisconsin-Milwaukee
Leibniz Universität Hannover
Università di Pisa
Sezione di Pisa
Australian National University
University of Mississippi
California State University Fullerton
Université Paris-Saclay
Chennai Mathematical Institute
Università di Roma Tor Vergata
University of Southampton
Universität Hamburg
Sezione di Roma
Sorbonne Paris Cité
Montana State University
Università di Perugia
Sezione di Perugia
European Gravitational Observatory (EGO)
Syracuse University
University of Glasgow
LIGO Hanford Observatory
RMKI
Columbia University
Stanford University
Dipartimento di Fisica e Astronomia
Sezione di Padova
CAMK-PAN
University of Birmingham
Università degli Studi di Genova
Sezione di Genova
RRCAT
Lomonosov Moscow State University
University of the West of Scotland
University of Western Australia
Radboud University Nijmegen
Observatoire Côte d'Azur
Université de Rennes 1
Washington State University
Università degli Studi di Urbino Carlo Bo
Sezione di Firenze
University of Oregon
Collège de France
Carleton College
Astronomical Observatory Warsaw University
VU University Amsterdam
University of Maryland
Georgia Institute of Technology
Université Claude Bernard Lyon 1
Complesso Universitario di Monte S.Angelo
NASA/Goddard Space Flight Center
University of Tokyo
Tsinghua University
Texas Tech University
Pennsylvania State University
National Tsing Hua University
Charles Sturt University
West Virginia University
University of Chicago
Caltech CaRT
Korea Institute of Science and Technology Information
Università di Roma la Sapienza
University of Brussels
Sonoma State University
Northwestern University
University of Minnesota
University of Melbourne
Institute for Plasma Research
University of Sheffield
University of Texas Rio Grande Valley
Dipartimento di Fisica
Trento Institute for Fundamental Physics and Applications
Cardiff University
Montclair State University
Lendulet Astrophysics Research Group
National Astronomical Observatory of Japan
University of Edinburgh
Indian Institute of Technology
University of Szeged
Embry-Riddle Aeronautical University
Osservatorio Astronomico di Capodimonte
University of Michigan
Rochester Institute of Technology
University of Illinois at Urbana-Champaign
IAC3 - IEEC
University of Białystok
University of Strathclyde
CET Campus
University of Toronto
Institute of Applied Physics
Pusan National University
Hanyang University
University of Adelaide
NCBJ
IM-PAN
Monash University
Seoul National University
Chinese University of Hong Kong
University of Alabama in Huntsville
University of Massachusetts-Amherst
CNRS
AandM College
College of William and Mary
Universidade Estadual Paulista (UNESP)
University of Cambridge
IISER-Kolkata
HSIC
Whitman College
National Institute for Mathematical Sciences
Université de Lyon
Hobart and William Smith Colleges
University of Zielona Góra
University of London
Andrews University
Università di Siena
Trinity University
University of Washington
Kenyon College
Abilene Christian University
Sezione di Napoli
Institución
Resumen
We report results of a deep all-sky search for periodic gravitational waves from isolated neutron stars in data from the S6 LIGO science run. The search was possible thanks to the computing power provided by the volunteers of the Einstein@Home distributed computing project. We find no significant signal candidate and set the most stringent upper limits to date on the amplitude of gravitational wave signals from the target population. At the frequency of best strain sensitivity, between 170.5 and 171 Hz we set a 90% confidence upper limit of 5.5×10-25, while at the high end of our frequency range, around 505 Hz, we achieve upper limits ≃10-24. At 230 Hz we can exclude sources with ellipticities greater than 10-6 within 100 pc of Earth with fiducial value of the principal moment of inertia of 1038 kg m2. If we assume a higher (lower) gravitational wave spin-down we constrain farther (closer) objects to higher (lower) ellipticities.