Artículos de revistas
Stretched-exponential behavior and random walks on diluted hypercubic lattices
Fecha
2011-10-18Registro en:
Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, v. 84, n. 4, 2011.
1539-3755
1550-2376
10.1103/PhysRevE.84.041126
2-s2.0-80055008384
Autor
Universidade Estadual Paulista (UNESP)
Université Montpellier II
Institución
Resumen
Diffusion on a diluted hypercube has been proposed as a model for glassy relaxation and is an example of the more general class of stochastic processes on graphs. In this article we determine numerically through large-scale simulations the eigenvalue spectra for this stochastic process and calculate explicitly the time evolution for the autocorrelation function and for the return probability, all at criticality, with hypercube dimensions N up to N=28. We show that at long times both relaxation functions can be described by stretched exponentials with exponent 1/3 and a characteristic relaxation time which grows exponentially with dimension N. The numerical eigenvalue spectra are consistent with analytic predictions for a generic sparse network model. © 2011 American Physical Society.