Artículos de revistas
Quantum coherence and speed limit in the mean-field Dicke model of superradiance
Fecha
2020-11-16Registro en:
Physical Review A, v. 102, n. 5, 2020.
2469-9934
2469-9926
10.1103/PhysRevA.102.053716
2-s2.0-85096921830
Autor
Universidade Estadual Paulista (Unesp)
Universidade Federal Do Rio Grande Do Norte
Universidade Federal do ABC (UFABC)
Universidade Estadual Do Piauí
Institución
Resumen
Dicke superrandiance is a cooperative phenomenon which arises from the collective coupling of an ensemble of atoms to the electromagnetic radiation. Here we discuss the quantifying of quantum coherence for the Dicke model of superradiance in the mean-field approximation. We found the single-atom l1 norm of coherence is given by the square root of the normalized average intensity of radiation emitted by the superradiant system. This validates quantum coherence as a useful figure of merit towards the understanding of superradiance phenomenon in the mean-field approach. In particular, this result suggests probing the single-atom coherence through the radiation intensity in superradiant systems, which might be useful in experimental realizations where is unfeasible to address atoms individually. Furthermore, given the nonlinear unitary dynamics of the time-dependent single-atom state that effectively describes the system of N atoms, we analyze the quantum speed limit time and its interplay with the l1 norm of coherence. We verify the quantum coherence speeds up the evolution of the superradiant system, i.e., the more coherence stored on the single-atom state, the faster the evolution. These findings unveil the role played by quantum coherence in superradiant systems, which in turn could be of interest for communities of both condensed matter physics and quantum optics.