Artículos de revistas
Final evolutions of a class of May-Leonard Lotka-Volterra systems
Fecha
2020-04-02Registro en:
Journal Of Nonlinear Mathematical Physics. Abingdon: Taylor & Francis Ltd, v. 27, n. 2, p. 267-278, 2020.
1402-9251
10.1080/14029251.2020.1700635
WOS:000509684400006
6682867760717445
0000-0003-2037-8417
Autor
Universidade Estadual Paulista (Unesp)
Univ Autonoma Barcelona
Institución
Resumen
We study a particular class of Lotka-Volterra 3-dimensional systems called May-Leonard systems, which depend on two real parameters a and b, when a + b = -1. For these values of the parameters we shall describe its global dynamics in the compactification of the non-negative octant of Double-struck capital R-3 including its infinity. This can be done because this differential system possesses a Darboux invariant.