Artículos de revistas
Exudate detection in fundus images using deeply-learnable features
Fecha
2019-01-01Registro en:
Computers in Biology and Medicine, v. 104, p. 62-69.
1879-0534
0010-4825
10.1016/j.compbiomed.2018.10.031
2-s2.0-85056215478
Autor
School of Engineering
Universidade Federal de São Carlos (UFSCar)
Federal Institute of São Paulo
Universidade Estadual de Campinas (UNICAMP)
Universidade Estadual Paulista (Unesp)
Institución
Resumen
Presence of exudates on a retina is an early sign of diabetic retinopathy, and automatic detection of these can improve the diagnosis of the disease. Convolutional Neural Networks (CNNs) have been used for automatic exudate detection, but with poor performance. This study has investigated different deep learning techniques to maximize the sensitivity and specificity. We have compared multiple deep learning methods, and both supervised and unsupervised classifiers for improving the performance of automatic exudate detection, i.e., CNNs, pre-trained Residual Networks (ResNet-50) and Discriminative Restricted Boltzmann Machines. The experiments were conducted on two publicly available databases: (i) DIARETDB1 and (ii) e-Ophtha. The results show that ResNet-50 with Support Vector Machines outperformed other networks with an accuracy and sensitivity of 98% and 0.99, respectively. This shows that ResNet-50 can be used for the analysis of the fundus images to detect exudates.