info:eu-repo/semantics/article
Patient-Specific Detection of Atrial Fibrillation in Segments of ECG Signals using Deep Neural Networks
Detección de fibrilación auricular en señales ECG usando Redes Neuronales para pacientes específicos
Registration in:
10.18359/rcin.4156
Author
Castillo, Jeyson A.
Granados, Yenny C.
Fajardo Ariza, Carlos Augusto
Institutions
Abstract
Atrial Fibrillation (AF) is the most common cardiac arrhythmia worldwide. It is associated with reduced quality of life and increases the risk of stroke and myocardial infarction. Unfortunately, many cases of AF are asymptomatic and undiagnosed, which increases the risk for the patients. Due to its paroxysmal nature, the detection of AF requires the evaluation, by a cardiologist, of long-term ECG signals. In Colombia, it is difficult to have access to an early diagnosis of AF because of the associated costs to the detection and the geographical distribution of cardiologists. This work is part of a macro project that aims to develop a specific-patient portable device for the detection of AF. This device will be based on a Convolutional Neural Network (CNN). We aim to find a suitable CNN model, which later could be implemented in hardware. Diverse techniques were applied to improve the answer regarding accuracy, sensitivity, specificity, and precision. The final model achieves an accuracy of , a specificity of , a sensitivity of and a precision of . During the development of the model, the computational cost and memory resources were taking into account in order to obtain an efficient hardware model in a future implementation of the device. La fibrilación auricular (FA) es la arritmia cardíaca más común en todo el mundo. Se asocia con una reducción de la calidad de vida y aumenta el riesgo de accidente cerebrovascular e infarto de miocardio. Desafortunadamente muchos casos de FA son asintomáticos, lo cual aumenta el riesgo para los pacientes. Debido a su naturaleza paroxística, la detección de la FA requiere la evaluación, por parte de un cardiologo, de señales ECG de larda duración. En Colombia, es difícil dificil tener dianóstico temprano de la FA debido a los costos asociados a la detección de la FA y la distribución geográfica de los cardiólogos. Este trabajo es parte de un proyecto macro que tiene como objetivo desarrollar un dispositivo portátil para pacientes específicos que permita detectar la FA, el cual estará basado en una red neuronal convolucional (CNN). Nuestro objetivo es encontrar un modelo CNN adecuado, que luego se pueda implementar en hardware. Se aplicaron diversas técnicas para mejorar la respuesta con respecto a la exactitud, la sensibilidad, la especificidad y la precisión. El modelo final alcanza una exactitud del 97,44%, una especificidad del 97,76%, una sensibilidad del 96,97% y una precisión del 96,80%. Durante el desarrollo del modelo, el costo computacional y los recursos de memoria se tuvieron en cuenta para obtener un modelo de hardware eficiente en una futura implementación del dispositivo.