doctoralThesis
Desenvolvimento de um biosensor para mensuração de deformações mecânicas em tecidos ósseos
Fecha
2015-05-21Registro en:
KARAM, Leandro Zen. Desenvolvimento de um biosensor para mensuração de deformações mecânicas em tecidos ósseos. 2015. 95 f. Tese (Doutorado em Engenharia Elétrica e Informática Industrial) – Universidade Tecnológica Federal do Paraná, Curitiba, 2015.
Autor
Karam, Leandro Zen
Resumen
This study aims to develop a biosensor using Bragg gratings in optical fibers, capable of measuring deformation in bone tissue for this took a lot of work. Initially sterilization and disinfection with sensors tests were performed after the entire process, the sensors were tested for their sensitivity. In the same study methods of sterilization and disinfection have been tested to assess its efficiency. Thus methods of sterilization and disinfection autoclave, ethylene oxide, sodium hypochlorite, chloramine T and peracetic acid were effective for removing or inactivating microorganisms and, without changes in the behavior of the FBGs. With this set up methods applicable for possible studies, where optical fibers are implanted in in vivo animal studies metabolic behavior in the presence of inorganic materials. Continuing the work was carried out optical fiber compatibility tests inserted in the subcutaneous tissue of rats. Based on the descriptive analysis of histological sections can be concluded that the optical fiber uncoated and coated were biocompatible when implanted in rat subcutaneous tissue. Thus it is possible to contemplate the development of a sensor based on Bragg gratings in optical fibers for direct implantation into the bone tissue. Following on from the work were carried out pilot tests for development of construction methodology and implant in biosensor development. With all the work done to date, the development and construction of a biosensor that was implanted in vivo was possible. The biosensor was fixed in the mandibular region of a bull four months old. A week after implantation, the animal received different types of food and was monitored during the intake of foods. With the deformations measured parse the different masticatory patterns and different magnitudes of force and masticatory frequency that the animal developed during the chewing process completing the objectives of this study.