masterThesis
Sensor a fibra óptica para monitoração de mancais de hidrogeradores
Fecha
2014-03-23Registro en:
DREYER, Uilian José. Sensor a fibra óptica para monitoração de mancais de hidrogeradores. 2014. 103 f. Dissertação (Mestrado em Engenharia Elétrica) - Universidade Tecnológica Federal do Paraná, Pato Branco, 2014.
Autor
Dreyer, Uilian José
Resumen
This work aims to develop a fiber optic probe for temperature monitoring in bearings of generators hydro power plants. Graphic design, thermal modeling, assembly and testing process is presented. Once it is innovation, it is difficult to compare with other optical transducers developed specifically for monitoring temperature in bearing hydro generators. Initially experiments were performed with a prototype for determination of the thermal dynamics inside the bearings in various operating situations. From this measurement, an optical transducer was designed which was two optical fibers with 3 Bragg gratings recorded in each of them. These gratings are encapsulated by a rod made of alumina and covered with rings of material with good thermal conductivity where the Bragg grating is located, and low thermal conductivity in the remainder of the rod. The procedure for calibrating the Bragg gratings of the transducer consisted of steps of 10°C in the temperature range from 10°C to 80°C. Each temperature value remained stable during 20 min, allowing the mean wavelength reflected from each sensor might be estimated by a histogram. Were determined from the calibration the correlation coefficient and the coefficient of thermal sensitivity of each sensor, and the combined standard uncertainty thereof. The uncertainties were divided into two types: Type A uncertainties are related to the sample dispersion and are determined from the mean, variance and standard deviation of the samples taken during calibration, and type B where uncertainties are obtained from manuals and certificates of calibration. Tests were conducted in laboratory with the aim to submit the new transducer to large temperature variations, ranging between 15°C and 75°C and to check if the uncertainties corresponded in practice. The results presented the maximum error of about 0.9°C between the optical sensor and the reference sensor PT100. This result is within the range of uncertainty values calculated for the fiber optical fiber 2, uncertainty values of 0.98°C, 0.85°C to 0.71°C respectively for the FBG 1, 2 and 3 were observed. The development of this transducer enables the creation of new systems for monitoring temperature optical applicable in generators, as well as the interconnection of these systems to the future the total thermal mapping of a generator using optical sensing.