masterThesis
Caracterização de um acelerômetro óptico biaxial para monitoramento de vibrações em máquinas elétrica
Fecha
2016-04-18Registro en:
LINESSIO, Rafael Pomorski. Caracterização de um acelerômetro óptico biaxial para monitoramento de vibrações em máquinas elétricas. 2016. 93 f. Dissertação (Mestrado em Engenharia Elétrica e Informática Industrial) - Universidade Tecnológica Federal do Paraná, Curitiba, 2016.
Autor
Linessio, Rafael Pomorski
Resumen
The means focus of this study is to implement, characterize, calibrate and test of a biaxial optical fiber accelerometer for vibration monitoring in electrical machines. The conventional methods of the sensing as well as the optical systems for analysis of the vibrations are presents. The accelerometer proposed uses fiber Bragg gratings to measure the displacement of the na inertial mass, where cause the change of Bragg wavelength relatively to a displacement of the support base. The biaxial optical accelerometer allows the measurement of the acceleration in two ortogonal directions, where the natural frequency for the x-axis is 747,5 Hz and for y-axis is 757,5 Hz, being able to perform measurements with constant sensitivity up to one third of these frequencies. The characterization in frequency response called dynamic mass was obtained with the experimental tests using the impact hammer and electromechanical actuator. The last test allowed the accelerometer was exposed to a harmonic excitation of the 10 Hz to 750 Hz. The comparison of the response between the optical system and the piezoelectric accelerometer used as reference allowed to get the sensibility in pm by g regarding the analysis of the frequency. The analysis frequency is in line with the NBR 60034-14 wich specifies the limits of the vibration for rotating electrical machines when uncoupled from any load or drive. The tests perfomed to validate the response of the biaxial optical accelerometer for a monitoring of the vibration frequencies in electrical machines were developed in three moments. First it was tested a group-generator, 500 kVA at the Hospital Pequeno Príncipe in Curitiba. Second was used an induction motor connected to a frequency inverter and finally was analyzed na operating induction motor with broken rotor bar where was also used a synchronous generator to provide the load for motor.