bachelorThesis
Desenvolvimento de uma plataforma de avaliação e análise de salto vertical baseada em sensores piezoelétricos
Fecha
2017-11-30Registro en:
SANTOS, Caroline Peixoto. Desenvolvimento de uma plataforma de avaliação e análise de salto vertical baseada em sensores piezoelétricos. 2017. 69 f. Trabalho de Conclusão de Curso (Engenharia Eletrônica) - Universidade Tecnológica Federal do Paraná, Ponta Grossa, 2017.
Autor
Santos, Caroline Peixoto
Resumen
The importance of measuring data from the physical and physiological condition of an athlete is something that has been gaining prominence. The data acquired provides a basis for decision making and training strategy, as well as temporal evaluations for performance improvement and injury prevention. The vertical jump is a movement that carries essential information for physical and physiological assessment of athletes in a variety of sports, such as basketball, volleyball, swimming, among others. Some of the variables that can be analyzed due to a vertical jump test are flight time, height and power. Thus, this work aims to develop a vertical jump platform using piezoelectric ceramic sensors. The development of the equipment was carried out with the study of 35 mm piezoelectric ceramic sensors to measure the voltage as a function of the force applied to the platform surface, followed by signal conditioning and processing, the use of microcontrollers for data processing and identification, and instrumentation to perform the mathematical calculations to obtain the variables. The measurements began with the characterization of the piezoelectric sensors in order to verify their correlation with the applied force in the sensors, design and development of a load amplifier in order to attenuate and filter the signal from the sensors, obtaining and identifying the data by programming in the Arduino, and virtual instrumentation for mathematical analysis of the data and creation of an interface for the user. The flight time measurements were validated by video analysis using the GoPro Hero 3 camcorder, resulting in a 1.916% percent error and a Pearson correlation coefficient of 0.998, ensuring calculation of reliable height and power values.