dc.contributorHernández, Rodrigo
dc.date.accessioned2022-01-28T17:11:13Z
dc.date.accessioned2022-11-08T20:36:30Z
dc.date.available2022-01-28T17:11:13Z
dc.date.available2022-11-08T20:36:30Z
dc.date.created2022-01-28T17:11:13Z
dc.identifierhttps://repositorio.uai.cl//handle/20.500.12858/3419
dc.identifier10.1007/s00208-016-1418-x
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/5147807
dc.description.abstractWe study the order of affine and linear invariant families of planar harmonic mappings in the unit disk. By using the famous shear construction of Clunie and Sheil-Small, we construct a function to determine the order of the family of mappings with bounded Schwarzian norm. The result shows that finding the order of the class SH of univalent harmonic mappings can be formulated as a question about Schwarzian norm and, in particular, our result shows consistency between the conjectured order of SH and the Schwarzian norm of the harmonic Koebe function.
dc.titleAffine and linear invariant families of harmonic mappings.
dc.typeArtículo WoS


Este ítem pertenece a la siguiente institución