dc.creatorVanhoenshoven F.
dc.creatorNápoles G.
dc.creatorFroelich W.
dc.creatorSalmeron J.L.
dc.creatorVanhoof K.
dc.date.accessioned2020-09-02T22:29:55Z
dc.date.accessioned2022-11-08T20:22:32Z
dc.date.available2020-09-02T22:29:55Z
dc.date.available2022-11-08T20:22:32Z
dc.date.created2020-09-02T22:29:55Z
dc.date.issued2020
dc.identifier95, , -
dc.identifier15684946
dc.identifierhttps://hdl.handle.net/20.500.12728/6516
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/5144461
dc.languageen
dc.publisherElsevier Ltd
dc.subjectForecasting
dc.subjectFuzzy Cognitive Maps
dc.subjectLearning
dc.subjectTime series
dc.subjectCognitive systems
dc.subjectForecasting
dc.subjectFuzzy rules
dc.subjectInverse problems
dc.subjectTime series
dc.subjectForecasting modeling
dc.subjectForecasting models
dc.subjectFuzzy cognitive map
dc.subjectFuzzy cognitive maps (FCMs)
dc.subjectInnovative approaches
dc.subjectMulti-step prediction
dc.subjectMultivariate time series
dc.subjectReal-world scenario
dc.subjectLearning algorithms
dc.titlePseudoinverse learning of Fuzzy Cognitive Maps for multivariate time series forecasting
dc.typeArticle


Este ítem pertenece a la siguiente institución