Article (Journal/Review)
The calibration of stochastic local-volatility models: an inverse problem perspective
Fecha
2019Registro en:
Computers & Mathematics with Applications Volume 77, Issue 12, 15 June 2019, Pages 3054-3067
Autor
Saporito, Yuri Fahham
Zubelli, Jorge P.
Institución
Resumen
We tackle the calibration of the Stochastic Local-Volatility (SLV) model. This is the class of financial models that combines the local volatility and stochastic volatility features and has been subject of the attention by many researchers and practitioners recently. The corresponding inverse problem consists in finding certain (functional) coefficients in a class of parabolic partial differential equations from observed values of the solutions. More precisely, given a calibrated local volatility surface and a choice of stochastic volatility parameters, we calibrate the corresponding leverage function. Our approach makes use of regularization techniques from inverse-problem theory, respecting the integrity of the data and thus avoiding data interpolation. The result is a stable and efficient algorithm which is resilient to instabilities in the regions of low probability density of the spot price and of the instantaneous variance. We substantiate our claims with numerical experiments using synthetic and real data.