dc.contributorOjeda-Magaña, B., Departamento de Ingeniería de Proyectos CUCEI, Universidad de Guadalajara, José Guadalupe Zuno, 48, C.P. 45101, Zapopan, Jalisco, Mexico; Ruelas, R., Departamento de Ingeniería de Proyectos CUCEI, Universidad de Guadalajara, José Guadalupe Zuno, 48, C.P. 45101, Zapopan, Jalisco, Mexico; Quintanilla-Domínguez, J., E.T.S.I. de Telecomunicación, Universidad Politécnica de Madrid, Avda. Complutense 30, Madrid 28040, Spain; Corona-Nakamura, M.A., Departamento de Ingeniería de Proyectos CUCEI, Universidad de Guadalajara, José Guadalupe Zuno, 48, C.P. 45101, Zapopan, Jalisco, Mexico; Andina, D., E.T.S.I. de Telecomunicación, Universidad Politécnica de Madrid, Avda. Complutense 30, Madrid 28040, Spain
dc.creatorOjeda-Magana, B.
dc.creatorRuelas, R.
dc.creatorQuintanilla-Dominguez, J.
dc.creatorCorona-Nakamura, M.A.
dc.creatorAndina, D.
dc.date.accessioned2015-11-19T18:50:20Z
dc.date.accessioned2022-11-02T15:44:24Z
dc.date.available2015-11-19T18:50:20Z
dc.date.available2022-11-02T15:44:24Z
dc.date.created2015-11-19T18:50:20Z
dc.date.issued2011
dc.identifierhttp://hdl.handle.net/20.500.12104/65411
dc.identifier10.1007/978-3-642-19644-7_62
dc.identifierhttp://www.scopus.com/inward/record.url?eid=2-s2.0-80052946064&partnerID=40&md5=a5768ca1351d38a9913d1a897439451b
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/5017852
dc.description.abstractMass detection in mammography is a complex and challenge problem for digital image processing. Partitional clustering algorithms are a good alternative for automatic detection of such elements, but have the disadvantage of having to segment an image into a number of regions, the number of which is unknown in advance, in addition to discrete approximations of the regions of interest. In this work we use a method of image sub-segmentation to identify possible masses in mammography. The advantage of this method is that the number of regions to segment the image is a known value so the algorithm is applied only once. Additionally, there is a parameter α that can change between 1 and 0 in a continuous way, offering the possibility of a continuous and more accurate approximation of the region of interest. Finally, since the identification of masses is based on the internal similarity of a group data, this method offers the possibility to identify such objects even from a small number of pixels in digital images. This paper presents an illustrative example using the traditional segmentation of images and the sub-segmentation method, which highlights the potential of the alternative we propose for such problems. © 2011 Springer-Verlag Berlin Heidelberg.
dc.relationAdvances in Intelligent and Soft Computing
dc.relation87
dc.relation589
dc.relation598
dc.relationScopus
dc.titleIdentification of masses in mammograms by image sub-segmentation
dc.typeConference Paper


Este ítem pertenece a la siguiente institución