dc.contributorGrosche, C., II. Institut für Theoretische Physik, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany; Pogosyan, G.S., Laboratory of Theoretical Physics, Joint Institute for Nuclear Research (Dubna), Dubna, Moscow Oblast, 141980, Russian Federation, Departamento de Matematicas CUCEI, Universidad de Guadalajara, Guadalajara, Jalisco, Mexico; Sissakian, A.N., Departamento de Matematicas CUCEI, Universidad de Guadalajara, Guadalajara, Jalisco, Mexico
dc.creatorGrosche, C.
dc.creatorPogosyan, G.S.
dc.creatorSissakian, A.N.
dc.date.accessioned2015-11-19T18:51:40Z
dc.date.accessioned2022-11-02T15:35:39Z
dc.date.available2015-11-19T18:51:40Z
dc.date.available2022-11-02T15:35:39Z
dc.date.created2015-11-19T18:51:40Z
dc.date.issued2007
dc.identifierhttp://hdl.handle.net/20.500.12104/66864
dc.identifier10.1134/S1063779607030021
dc.identifierhttp://www.scopus.com/inward/record.url?eid=2-s2.0-34249935224&partnerID=40&md5=6657156137b432dc4fcf0095c04de515
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/5015982
dc.description.abstractIn this paper, the Feynman path integral technique is applied for superintegrable potentials on two-dimensional spaces of nonconstant curvature: these spaces are Darboux spaces D I and D II. On D I, there are three, and on D II four such potentials. We are able to evaluate the path integral in most of the separating coordinate systems, leading to expressions for the Green functions, the discrete and continuous wave-functions, and the discrete energy-spectra. In some cases, however, the discrete spectrum cannot be stated explicitly, because it is either determined by a transcendental equation involving parabolic cylinder functions (Darboux space I), or by a higher order polynomial equation. The solutions on D I in particular show that superintegrable systems are not necessarily degenerate. We can also show how the limiting cases of flat space (constant curvature zero) and the two-dimensional hyperboloid (constant negative curvature) emerge. © Nauka/Interperiodica 2007.
dc.relationPhysics of Particles and Nuclei
dc.relation38
dc.relation3
dc.relation299
dc.relation325
dc.relationScopus
dc.relationWOS
dc.titlePath integral approach for superintegrable potentials on spaces of nonconstant curvature: I. Darboux spaces D I and D II
dc.typeArticle


Este ítem pertenece a la siguiente institución