dc.contributor | Grosche, C., II. Institut für Theoretische Physik, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany; Pogosyan, G.S., Laboratory of Theoretical Physics, Joint Institute for Nuclear Research (Dubna), Dubna, Moscow Oblast, 141980, Russian Federation, Departamento de Matematicas CUCEI, Universidad de Guadalajara, Guadalajara, Jalisco, Mexico; Sissakian, A.N., Departamento de Matematicas CUCEI, Universidad de Guadalajara, Guadalajara, Jalisco, Mexico | |
dc.creator | Grosche, C. | |
dc.creator | Pogosyan, G.S. | |
dc.creator | Sissakian, A.N. | |
dc.date.accessioned | 2015-11-19T18:51:40Z | |
dc.date.accessioned | 2022-11-02T15:35:39Z | |
dc.date.available | 2015-11-19T18:51:40Z | |
dc.date.available | 2022-11-02T15:35:39Z | |
dc.date.created | 2015-11-19T18:51:40Z | |
dc.date.issued | 2007 | |
dc.identifier | http://hdl.handle.net/20.500.12104/66864 | |
dc.identifier | 10.1134/S1063779607030021 | |
dc.identifier | http://www.scopus.com/inward/record.url?eid=2-s2.0-34249935224&partnerID=40&md5=6657156137b432dc4fcf0095c04de515 | |
dc.identifier.uri | https://repositorioslatinoamericanos.uchile.cl/handle/2250/5015982 | |
dc.description.abstract | In this paper, the Feynman path integral technique is applied for superintegrable potentials on two-dimensional spaces of nonconstant curvature: these spaces are Darboux spaces D I and D II. On D I, there are three, and on D II four such potentials. We are able to evaluate the path integral in most of the separating coordinate systems, leading to expressions for the Green functions, the discrete and continuous wave-functions, and the discrete energy-spectra. In some cases, however, the discrete spectrum cannot be stated explicitly, because it is either determined by a transcendental equation involving parabolic cylinder functions (Darboux space I), or by a higher order polynomial equation. The solutions on D I in particular show that superintegrable systems are not necessarily degenerate. We can also show how the limiting cases of flat space (constant curvature zero) and the two-dimensional hyperboloid (constant negative curvature) emerge. © Nauka/Interperiodica 2007. | |
dc.relation | Physics of Particles and Nuclei | |
dc.relation | 38 | |
dc.relation | 3 | |
dc.relation | 299 | |
dc.relation | 325 | |
dc.relation | Scopus | |
dc.relation | WOS | |
dc.title | Path integral approach for superintegrable potentials on spaces of nonconstant curvature: I. Darboux spaces D I and D II | |
dc.type | Article | |