dc.contributorSainz, I., Departamento de Física, Universidad de Guadalajara, Revolución 1500, Guadalajara, Jalisco 44420, Mexico; Roa, L., Center of Quantum Optics and Quantum Information, Departamento de Física, Universidad de Concepción, Casilla-160C, Concepción, Chile; Klimov, A.B., Departamento de Física, Universidad de Guadalajara, Revolución 1500, Guadalajara, Jalisco 44420, Mexico
dc.contributorKlimov, Andrei B., Universidad de Guadalajara. Centro Universitario de Ciencias Exactas e Ingenierías
dc.creatorSainz, I.
dc.creatorRoa, L.
dc.creatorKlimov, Andrei B.
dc.date.accessioned2015-11-19T18:55:30Z
dc.date.accessioned2022-11-02T15:27:51Z
dc.date.available2015-11-19T18:55:30Z
dc.date.available2022-11-02T15:27:51Z
dc.date.created2015-11-19T18:55:30Z
dc.date.issued2010
dc.identifierhttp://hdl.handle.net/20.500.12104/68456
dc.identifier10.1103/PhysRevA.81.052114
dc.identifierhttp://www.scopus.com/inward/record.url?eid=2-s2.0-77953173258&partnerID=40&md5=234ba4ee9bc36a47fa9ff41e76e4a230
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/5014277
dc.description.abstractWe have developed a general method for constructing a set of nonorthogonal bases with equal separations between all different basis states in prime dimensions. The results are that the corresponding biorthogonal counterparts are pairwise unbiased with the components of the original bases. Using these bases, we derive an explicit expression for the optimal tomography in nonorthogonal bases. A special two-dimensional case is analyzed separately. © 2010 The American Physical Society.
dc.relationPhysical Review A - Atomic, Molecular, and Optical Physics
dc.relation81
dc.relation5
dc.relationScopus
dc.relationWOS
dc.titleUnbiased nonorthogonal bases for tomographic reconstruction
dc.typeArticle


Este ítem pertenece a la siguiente institución