dc.contributorMessina, P.V., Department of Chemistry, Universidad Nacional Del sur, INQUISUR-CONICET, 8000 Bahía Blanca, Argentina; Hassan, N., Laboratoire Physico-chimie des Electrolytes, Colloides et Sciences Analytiques (PECSA), Université Pierre et Marie Curie, 75252 Paris, France, Laboratorio de Nanobiotecnología, Facultad de Ciencias Químicas y Farmaceuticas, Universidad de Chile, Chile; Soltero, A., Departamento de Ingeniería Química, Universidad de Guadalajara, Guadalajara Jalisco, 44430, Mexico; Ruso, J.M., Soft Matter and Molecular Biophysics Group, Department of Applied Physics, University of Santiago de Compostela, Santiago de Compostela 15782, Spain
dc.creatorMessina, P.V.
dc.creatorHassan, N.
dc.creatorSoltero, A.
dc.creatorRuso, J.M.
dc.date.accessioned2015-11-19T18:50:21Z
dc.date.accessioned2022-11-02T15:08:50Z
dc.date.available2015-11-19T18:50:21Z
dc.date.available2022-11-02T15:08:50Z
dc.date.created2015-11-19T18:50:21Z
dc.date.issued2013
dc.identifierhttp://hdl.handle.net/20.500.12104/65417
dc.identifier10.1039/c3ra42204f
dc.identifierhttp://www.scopus.com/inward/record.url?eid=2-s2.0-84887362158&partnerID=40&md5=0254b95010772e10498523acc3901edf
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/5009804
dc.description.abstractThe strategies of bottom-up design of inorganic structures from biological templates enable cheap, eco-friendly and efficient fabrication of nano-structured materials. Here, template assembly of silica nanostructures were achieved using different protein hydrogels. Ovalbumin and fibrinogen gels were prepared by heat treatment at different pHs and protein concentrations. These hydrogels have been morphologically (SEM) and mechanically (rheology) well characterized. Next, a silica precursor is added, the condensation reaction is initiated and finally the protein hydrogel template is removed by calcination. A variety of 3D nanostructures ranging from highly porosity structures to spherical particles have been identified and characterized. Furthermore, it was observed that the fractal dimension of silica structures follow the same pattern than their corresponding templates. Consequently, the bio-scaffolding method proposed here helps the bottom-up assembly of silica precursors in nanostructures with defined three dimensional dimensions and provides a versatile route for the design of new architectures under green conditions. © 2013 The Royal Society of Chemistry.
dc.relationRSC Advances
dc.relation3
dc.relation46
dc.relation24256
dc.relation24265
dc.relationScopus
dc.relationWOS
dc.titleIdentifying emerging trends of protein hydrogels for biological scaffolding
dc.typeArticle


Este ítem pertenece a la siguiente institución