dc.contributorNesterov, A.I., Departamento de Física, Universidad de Guadalajara, Guadalajara, Jalisco, Mexico, Department of Theoretical Physics, Krasnoyarsk State University, Krasnoyarsk, Russian Federation
dc.creatorNesterov, A.I.
dc.date.accessioned2015-09-15T18:46:50Z
dc.date.accessioned2022-11-02T14:35:22Z
dc.date.available2015-09-15T18:46:50Z
dc.date.available2022-11-02T14:35:22Z
dc.date.created2015-09-15T18:46:50Z
dc.date.issued1997
dc.identifierhttp://hdl.handle.net/20.500.12104/44028
dc.identifierhttp://www.scopus.com/inward/record.url?eid=2-s2.0-0344322760&partnerID=40&md5=6d544dbe0ff3a9dcf34df00e1fd84609
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/5000861
dc.description.abstractA new quasigroup approach to conservation laws in general relativity is applied to study asymptotically flat spacetime at future null infinity. The infinite-parameter Newman-Unti group of asymptotic symmetries is reduced to the Poincare quasigroup, and the Noether charge associated with any element of the Poincare quasialgebra is defined. The integral conserved quantities of energy-momentum and angular momentum are linear on generators of Poincare quasigroup, are free of the supertranslation ambiguity, possess flux, and are identically equal to zero in Minkowski spacetime.
dc.relationScopus
dc.relationWOS
dc.relationPhysical Review D - Particles, Fields, Gravitation and Cosmology
dc.relation56
dc.relation12
dc.relationR7498
dc.relationR7502
dc.titleQuasigroups, asymptotic symmetries, and conservation laws in general relativity
dc.typeArticle


Este ítem pertenece a la siguiente institución