Real-time discrete recurrent high order neural observer for induction motors
dc.contributor | Alanis, A.Y., CUCEI, Universidad de Guadalajara, Av. Revolucion 1500, Col. Olimpica, C.P. 44430, Guadalajara, Jalisco, Mexico; Sanchez, E.N., CINVESTAV, Unidad Guadalajara, Plaza La Luna, Apartado Postal 31-438, Guadalajara, Jalisco, C.P. 45091, Mexico; Loukianov, A.G., CINVESTAV, Unidad Guadalajara, Plaza La Luna, Apartado Postal 31-438, Guadalajara, Jalisco, C.P. 45091, Mexico | |
dc.creator | Alanis, A.Y. | |
dc.creator | Sanchez, E.N. | |
dc.creator | Loukianov, A.G. | |
dc.date.accessioned | 2015-09-15T18:47:58Z | |
dc.date.accessioned | 2022-11-02T14:17:15Z | |
dc.date.available | 2015-09-15T18:47:58Z | |
dc.date.available | 2022-11-02T14:17:15Z | |
dc.date.created | 2015-09-15T18:47:58Z | |
dc.date.issued | 2008 | |
dc.identifier | http://www.scopus.com/inward/record.url?eid=2-s2.0-56349150548&partnerID=40&md5=b08d2cda92052ff4a3dde003791e0478 | |
dc.identifier | http://hdl.handle.net/20.500.12104/44089 | |
dc.identifier | 10.1109/IJCNN.2008.4633923 | |
dc.identifier.uri | https://repositorioslatinoamericanos.uchile.cl/handle/2250/4994849 | |
dc.description.abstract | A nonlinear discrete-time neural observer for the state estimation of a discrete-time induction motor model, in presence of external and internal uncertainties is presented. The observer is based on a discrete-time recurrent high order neural network (RHONN) trained with an extended Kalman filter (EKF)-based algorithm. This observer estimates the state of the unknown discrete-time nonlinear system, using a parallel configuration. The paper also includes the stability proof on the basis of the Lyapunov approach. To illustrate the applicability real-time results are included. � 2008 IEEE. | |
dc.relation | Scopus | |
dc.relation | Proceedings of the International Joint Conference on Neural Networks | |
dc.relation | 1012 | |
dc.relation | 1018 | |
dc.title | Real-time discrete recurrent high order neural observer for induction motors | |
dc.type | Conference Paper |